Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 3, pp 753–769 | Cite as

Enhanced Lactic Acid Production by Adaptive Evolution of Lactobacillus paracasei on Agro-industrial Substrate

  • Dragana MladenovićEmail author
  • Jelena Pejin
  • Sunčica Kocić-Tanackov
  • Aleksandra Djukić-Vuković
  • Ljiljana Mojović
Article

Abstract

The aim of this study was to perform the adaptation of Lactobacillus paracasei NRRL B-4564 to substrate through adaptive evolution in order to ensure intensive substrate utilization and enhanced L (+)-lactic acid (LA) production on molasses-enriched potato stillage. To evaluate the strain response to environmental conditions exposed during the adaptation process and to select the best adapted cells, the antioxidant activity and LA-producing capability were assessed in batch fermentation. The most promising adapted strain was further used in a pulsed fed-batch mode. Among three selected adapted strains, L. paracasei A-22 showed considerably improved antioxidant capacity, demonstrating more than onefold higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging rates compared to parent strain. This strain also exhibited superior LA production in batch fermentation and reached 89.4 g L−1 of LA, with a yield of 0.89 g g−1, a productivity of 1.49 g L−1 h−1, and an optical purity greater than 99%. Furthermore, in fed-batch mode L. paracasei A-22 resulted in 59% higher LA concentration (169.9 g L−1) compared to parent strain (107.1 g L−1). The strain adaptation to molasses environment, performed in this study, is a rather simple and promising method for enhancement of LA production on the complex agro-industrial substrate.

Keywords

Strain adaptation Antioxidant activity Lactic acid Fed-batch fermentation Sugar beet molasses Potato stillage 

Notes

Acknowledgements

Authors acknowledge Milica Carević, PhD, for help in HPLC analysis.

Funding Information

Research presented in this paper was funded by the Ministry of Education, Science and Technological Development, Republic of Serbia, project number TR 31017 and Scientific Project#1 between People’s Republic of China and the Republic of Serbia 2017–2019.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Madhavan Nampoothiri, K., Nair, N. R., & John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493–8501.CrossRefGoogle Scholar
  2. 2.
    Van De Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S. D., & Maguin, E. (2002). Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek, 82(1/4), 187–216.CrossRefGoogle Scholar
  3. 3.
    Zhang, Y., Zhu, Y., Zhu, Y., & Li, Y. (2009). The importance of engineering physiological functionality into microbes. Trends in Biotechnology, 27(12), 664–672.CrossRefGoogle Scholar
  4. 4.
    Zhang, Y., & Li, Y. (2013). Engineering the antioxidative properties of lactic acid bacteria for improving its robustness. Current Opinion in Biotechnology, 24(2), 142–147.CrossRefGoogle Scholar
  5. 5.
    Lushchak, V. I. (2014). Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, 224, 164–175.CrossRefGoogle Scholar
  6. 6.
    Lushchak, V. I. (2011). Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 153(2), 175–190.Google Scholar
  7. 7.
    Dragosits, M., & Mattanovich, D. (2013). Adaptive laboratory evolution – principles and applications for biotechnology. Microbial Cell Factories, 12(1), 64.CrossRefGoogle Scholar
  8. 8.
    Sunwoo, I. Y., Kwon, J. E., Nguyen, T. H., Ra, C. H., Jeong, G. T., & Kim, S. K. (2017). Bioethanol production using waste seaweed obtained from Gwangalli beach, Busan, Korea by co-culture of yeasts with adaptive evolution. Applied Biochemistry and Biotechnology, 183(3), 966–979.CrossRefGoogle Scholar
  9. 9.
    Misra, S., Raghuwanshi, S., & Saxena, R. K. (2013). Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92(2), 1596–1601.CrossRefGoogle Scholar
  10. 10.
    Tomás-Pejó, E., Ballesteros, M., Oliva, J. M., & Olsson, L. (2010). Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. Journal of Industrial Microbiology and Biotechnology, 37(11), 1211–1220.CrossRefGoogle Scholar
  11. 11.
    Xu, S., Hao, N., Xu, L., Liu, Z., Yan, M., Li, Y., & Ouyang, P. (2015). Series fermentation production of ornithine and succinic acid from cane molasses by Corynebacterium glutamicum. Biochemical Engineering Journal, 99, 177–182.CrossRefGoogle Scholar
  12. 12.
    He, X., Chen, K., Li, Y., Wang, Z., Zhang, H., Qian, J., & Ouyang, P. (2015). Enhanced l-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation. Bioprocess and Biosystems Engineering, 38(8), 1615–1622.CrossRefGoogle Scholar
  13. 13.
    Küçükaşik, F., Kazak, H., Güney, D., Finore, I., Poli, A., Yenigün, O., Nicolaus, B., & Öner, E. T. (2011). Molasses as fermentation substrate for levan production by Halomonas sp. Applied Microbiology and Biotechnology, 89(6), 1729–1740.CrossRefGoogle Scholar
  14. 14.
    Roukas, T. (1998). Pretreatment of beet molasses to increase pullulan production. Process Biochemistry, 33(8), 805–810.CrossRefGoogle Scholar
  15. 15.
    Kotzamanidis, C., Roukas, T., & Skaracis, G. (2002). Optimization of lactic acid production from beet molasses by Lactobacillus delbrueckii NCIMB 8130. World Journal of Microbiology and Biotechnology, 18(5), 441–448.CrossRefGoogle Scholar
  16. 16.
    Lee, J., Lee, S. Y., Park, S., & Middelberg, A. P. (1999). Control of fed-batch fermentations. Biotechnology Advances, 17(1), 29–48.CrossRefGoogle Scholar
  17. 17.
    Abdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31(6), 877–902.CrossRefGoogle Scholar
  18. 18.
    Hofvendahl, K., & Hahn-Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources1. Enzyme and Microbial Technology, 26(2-4), 87–107.CrossRefGoogle Scholar
  19. 19.
    Li, Z., Lu, J., Zhao, L., Xiao, K., & Tan, T. (2010). Improvement of L-lactic acid production under glucose feedback controlled culture by Lactobacillus rhamnosus. Applied Biochemistry and Biotechnology, 162(6), 1762–1767.CrossRefGoogle Scholar
  20. 20.
    Mladenović, D., Djukić-Vuković, A., Kocić-Tanackov, S., Pejin, J., & Mojović, L. (2016). Lactic acid production on a combined distillery stillage and sugar beet molasses substrate. Journal of Chemical Technology and Biotechnology, 91(9), 2474–2479.CrossRefGoogle Scholar
  21. 21.
    Lin, M. Y., & Yen, C. L. (1999). Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry, 47(4), 1460–1466.CrossRefGoogle Scholar
  22. 22.
    Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., Li, D., Niu, C., Yang, Z., & Wang, Q. (2012). Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chemistry, 135(3), 1914–1919.CrossRefGoogle Scholar
  23. 23.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.CrossRefGoogle Scholar
  24. 24.
    Barroso, C. G., Rodriguez, M. C., Guillen, D. A., & Perez-Bustamante, J. A. (1996). Analysis of low molecular mass phenolic compounds, furfural and 5-hydroxymethylfurfural in Brandy de Jerez by high-performance liquid chromatography-diode array detection with direct injection. Journal of Chromatography A, 724(1-2), 125–129.CrossRefGoogle Scholar
  25. 25.
    Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as potential antioxidants: a systematic review. Journal of Agricultural and Food Chemistry, 63(14), 3615–3626.CrossRefGoogle Scholar
  26. 26.
    Allen, S. A., Clark, W., McCaffery, J. M., Cai, Z., Lanctot, A., Slininger, P. J., Liu, Z. L., & Gorsich, S. W. (2010). Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnology for Biofuels, 3(1), 2.CrossRefGoogle Scholar
  27. 27.
    Solioz, M., Mermod, M., Abicht, H. K., & Mancini, S. (2011). Responses of lactic acid bacteria to heavy metal stress. In E. Tsakalidou & K. Papadimitriou (Eds.), Stress responses of lactic acid bacteria (pp. 163–195). Boston, MA: Springer.CrossRefGoogle Scholar
  28. 28.
    Park, H. S., Um, Y., Sim, S. J., Lee, S. Y., & Woo, H. M. (2015). Transcriptomic analysis of Corynebacterium glutamicum in the response to the toxicity of furfural present in lignocellulosic hydrolysates. Process Biochemistry, 50(3), 347–356.CrossRefGoogle Scholar
  29. 29.
    Taherzadeh, M. J., & Karimi, K. (2011). Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In: Biofuels: alternative feedstocks and conversion processes (Pandey, A., Larroche, Ch., Ricke, S.C., Dussap, C-G. Gnansounou, E., eds.), Academic Press, pp. 287–311.Google Scholar
  30. 30.
    Fattohi, N. (1990). Investigation into the presence of volatile secondary constituents of beet molasses with inhibitory effect on yeast fermentation and baker’s yeast quality. Zuckerindustrie, 115(5).Google Scholar
  31. 31.
    Almeida, J. R., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., & Gorwa-Grauslund, M. F. (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology and Biotechnology, 82(4), 340–349.CrossRefGoogle Scholar
  32. 32.
    de Oliveira, R. A., Rossell, C. E. V., Venus, J., Rabelo, S. C., & Maciel Filho, R. (2018). Detoxification of sugarcane-derived hemicellulosic hydrolysate using a lactic acid producing strain. Journal of Biotechnology, 278, 56–63.CrossRefGoogle Scholar
  33. 33.
    Yi, X., Zhang, P., Sun, J., Tu, Y., Gao, Q., Zhang, J., & Bao, J. (2016). Engineering wild-type robust Pediococcus acidilactici strain for high titer L-and D-lactic acid production from corn stover feedstock. Journal of Biotechnology, 217, 112–121.CrossRefGoogle Scholar
  34. 34.
    Filipčev, B., Mišan, A., Šarić, B., & Šimurina, O. (2016). Sugar beet molasses as an ingredient to enhance the nutritional and functional properties of gluten-free cookies. International Journal of Food Sciences and Nutrition, 67(3), 249–256.CrossRefGoogle Scholar
  35. 35.
    Valli, V., Gómez-Caravaca, A. M., Di Nunzio, M., Danesi, F., Caboni, M. F., & Bordoni, A. (2012). Sugar cane and sugar beet molasses, antioxidant-rich alternatives to refined sugar. Journal of Agricultural and Food Chemistry, 60(51), 12508–12515.CrossRefGoogle Scholar
  36. 36.
    Yang, X., Zhu, M., Huang, X., Lin, C. S. K., Wang, J., & Li, S. (2015). Valorisation of mixed bakery waste in non-sterilized fermentation for L-lactic acid production by an evolved Thermoanaerobacterium sp. strain. Bioresource Technology, 198, 47–54.CrossRefGoogle Scholar
  37. 37.
    Bai, D. M., Li, S. Z., Liu, Z. L., & Cui, Z. F. (2008). Enhanced l-(+)-lactic acid production by an adapted strain of Rhizopus oryzae using corncob hydrolysate. Applied Biochemistry and Biotechnology, 144(1), 79–85.CrossRefGoogle Scholar
  38. 38.
    Peinemann, J. C., & Pleissner, D. (2018). Material utilization of organic residues. Applied Biochemistry and Biotechnology, 184(2), 733–745.CrossRefGoogle Scholar
  39. 39.
    Djukić-Vuković, A., Mojović, L., Vukašinović-Sekulić, M., Nikolić, S., & Pejin, J. (2013). Integrated production of lactic acid and biomass on distillery stillage. Bioprocess and Biosystems Engineering, 36(9), 1157–1164.CrossRefGoogle Scholar
  40. 40.
    Marques, S., Gírio, F. M., Santos, J. A. L., & Roseiro, J. C. (2017). Pulsed fed-batch strategy towards intensified process for lactic acid production using recycled paper sludge. Biomass Conversion and Biorefinery, 7(2), 127–137.CrossRefGoogle Scholar
  41. 41.
    Ouyang, J., Ma, R., Zheng, Z., Cai, C., Zhang, M., & Jiang, T. (2013). Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresource Technology, 135, 475–480.CrossRefGoogle Scholar
  42. 42.
    Wang, L., Zhao, B., Liu, B., Yu, B., Ma, C., Su, F., Hua, D., Li, Q., Ma, Y., & Xu, P. (2010). Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 101(20), 7908–7915.CrossRefGoogle Scholar
  43. 43.
    Hu, J., Zhang, Z., Lin, Y., Zhao, S., Mei, Y., Liang, Y., & Peng, N. (2015). High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Bioresource Technology, 182, 251–257.CrossRefGoogle Scholar
  44. 44.
    Ge, X. Y., Qian, H., & Zhang, W. G. (2009). Improvement of l-lactic acid production from Jerusalem artichoke tubers by mixed culture of Aspergillus niger and Lactobacillus sp. Bioresource Technology, 100(5), 1872–1874.CrossRefGoogle Scholar
  45. 45.
    Wang, L., Zhao, B., Li, F., Xu, K., Ma, C., Tao, F., Li, Q., & Xu, P. (2011). Highly efficient production of d-lactate by Sporolactobacillus sp. CASD with simultaneous enzymatic hydrolysis of peanut meal. Applied Microbiology and Biotechnology, 89(4), 1009–1017.CrossRefGoogle Scholar
  46. 46.
    Xu, K., & Xu, P. (2014). Efficient production of L-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Bioresource Technology, 153, 23–29.CrossRefGoogle Scholar
  47. 47.
    Zhang, Y., & Vadlani, P. V. (2013). D-lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioprocess and Biosystems Engineering, 36(12), 1897–1904.CrossRefGoogle Scholar
  48. 48.
    Cheng, X., Dong, Y., Su, P., & Xiao, X. (2014). Improvement of the fermentative activity of lactic acid bacteria starter culture by the addition of Mn2+. Applied Biochemistry and Biotechnology, 174(5), 1752–1760.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of TechnologyUniversity of Novi SadNovi SadSerbia

Personalised recommendations