Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 3, pp 817–837 | Cite as

Enhanced Production of Phenolic Compounds in Compact Callus Aggregate Suspension Cultures of Rhodiola imbricata Edgew.

  • Sahil Kapoor
  • Ankita Sharma
  • Pushpender Bhardwaj
  • Hemant SoodEmail author
  • Shweta Saxena
  • Om Prakash Chaurasia
Article
  • 171 Downloads

Abstract

Rhodiola imbricata is a rare medicinal plant of the trans-Himalayan region of Ladakh. It is used for the treatment of numerous health ailments. Compact callus aggregate (CCA) suspension cultures of Rhodiola imbricata were established to counter extinction threats and for production of therapeutically valuable phenolic compounds to meet their increasing industrial demands. The present study also investigated the effect of jasmonic acid (JA) on production of phenolic compounds and bioactivities in CCA suspension cultures. CCA suspension cultures established in an optimized Murashige and Skoog medium supplemented with 30 g/l sucrose, 3 mg/l NAA, and 3 mg/l BAP showed maximum biomass accumulation (8.43 g/l DW) and highest salidroside production (3.37 mg/g DW). Upon 100 μM JA treatment, salidroside production (5.25 mg/g DW), total phenolic content (14.69 mg CHA/g DW), total flavonoid content (4.95 mg RE/g DW), and ascorbic acid content (17.93 mg/g DW) were significantly increased in cultures. In addition, DPPH-scavenging activity (56.32%) and total antioxidant capacity (60.45 mg QE/g DW) were significantly enhanced upon JA treatment, and this was positively correlated with increased accumulation of phenolic compounds. JA-elicited cultures exhibited highest antimicrobial activity against Escherichia coli. This is the first report describing the enhanced production of phenolic compounds and bioactivities from JA-elicited CCA suspension cultures of Rhodiola imbricata.

Keywords

Rhodiola imbricata Compact callus aggregate Phenolic compounds Jasmonic acid Antioxidant Antimicrobial 

Abbreviations

AAC

Ascorbic acid content

BAP

6-Benzylaminopurine

CHA

Chlorogenic acid

DFRSA

DPPH free radical scavenging activity

DW

Dry weight

FW

Fresh weight

JA

Jasmonic acid

MBC

Minimal bactericidal concentration

MIC

Minimal inhibitory concentration

NAA

1-naphthaleneacetic acid

PGRs

Plant growth regulators

QE

Quercetin equivalent

RE

Rutin equivalent

TAC

Total antioxidant capacity

TFC

Total flavonoid content

TPC

Total phenolic content

Notes

Acknowledgements

The authors wish to acknowledge Defence Research & Development Organization (DRDO), Ministry of Defence, Government of India, for financial support. Authors also wish to acknowledge Dr. Somen Acharya and Sc. ‘C’ Rajkumar for providing necessary facilities. The authors are also grateful to Rashmi Gupta for reviewing and copy-editing of the manuscript.

Authors’ Contribution

Experimental design, analysis and interpretation of data, and writing of the manuscript: SK, AS, HS, SS and OPC; HPLC analysis: SK and PB; Critical revision of the manuscript: HS.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2851_MOESM1_ESM.docx (229 kb)
ESM 1 (DOCX 229 kb)

References

  1. 1.
    Kanupriya, Prasad, D., Ram, M. S., Kumar, R., Sawhney, R. C., Sharma, S. K., & Banerjee, P. K. (2005). Cytoprotective and antioxidant activity of Rhodiola imbricata against tert-butyl hydroperoxide induced oxidative injury in U-937 human macrophages. Molecular and Cellular Biochemistry, 275(1–2), 1–6.  https://doi.org/10.1007/s11010-005-7637-1.Google Scholar
  2. 2.
    Gupta, V., Saggu, S., Tulsawani, R. K., Sawhney, R. C., & Kumar, R. (2008). A dose dependent adaptogenic and safety evaluation of Rhodiola imbricata Edgew, a high-altitude rhizome. Food and Chemical Toxicology, 46(5), 1645–1652.  https://doi.org/10.1016/j.fct.2007.12.027.Google Scholar
  3. 3.
    Gupta, V., Lahiri, S. S., Sultana, S., Tulsawani, R. K., & Kumar, R. (2010). Anti-oxidative effect of Rhodiola imbricata root extract in rats during cold, hypoxia and restraint (C-H-R) exposure and post-stress recovery. Food and Chemical Toxicology, 48(4), 1019–1025.  https://doi.org/10.1016/j.fct.2010.01.012.Google Scholar
  4. 4.
    Tayade, A. B., Dhar, P., Sharma, M., Chauhan, R. S., Chaurasia, O. P., & Srivastava, R. B. (2013). Antioxidant capacities, phenolic contents, and GC/MS analysis of Rhodiola imbricata Edgew. Root extracts from trans-Himalaya. Journal of Food Science, 78(3), 402–410.  https://doi.org/10.1111/1750-3841.12054.Google Scholar
  5. 5.
    Choudhary, A., Kumar, R., Srivastava, R. B., Surapaneni, S. K., Tikoo, K., & Singh, I. P. (2015). Isolation and characterization of phenolic compounds from Rhodiola imbricata, a trans-Himalayan food crop having antioxidant and anticancer potential. Journal of Functional Foods, 16, 183–193.  https://doi.org/10.1016/j.jff.2015.04.013.Google Scholar
  6. 6.
    Khanna, K., Mishra, K. P., Ganju, L., & Singh, S. B. (2017). Golden root: A wholesome treat of immunity. Biomedicine and Pharmacotherapy, 87, 496–502.  https://doi.org/10.1016/j.biopha.2016.12.132.Google Scholar
  7. 7.
    Ballabh, B., & Chaurasia, O. P. (2007). Traditional medicinal plants of cold desert Ladakh-used in treatment of cold, cough and fever. Journal of Ethnopharmacology, 112(2), 341–349.  https://doi.org/10.1016/j.jep.2007.03.020.Google Scholar
  8. 8.
    Dhar, P., Tayade, A. B., Bajpai, P. K., Sharma, V. K., Das, S. K., Chaurasia, O. P., & Singh, S. B. (2012). Antioxidant capacities and total polyphenol contents of hydro-ethanolic extract of phytococktail from trans-Himalaya. Journal of Food Science, 77(2), 156–161.  https://doi.org/10.1111/j.1750-3841.2011.02523.x.Google Scholar
  9. 9.
    Recio, M. C., Giner, R. M., & Máñez, S. (2016). Immunmodulatory and antiproliferative properties of Rhodiola species. Planta Medica, 82(11–12), 952–960.  https://doi.org/10.1055/s-0042-107254.Google Scholar
  10. 10.
    Tayade, A. B., Dhar, P., Kumar, J., Sharma, M., Chaurasia, O. P., & Srivastava, R. B. (2017). Trans-Himalayan Rhodiola imbricata Edgew. root: A novel source of dietary amino acids, fatty acids and minerals. Journal of Food Science and Technology, 54(2), 359–367.  https://doi.org/10.1007/s13197-016-2469-4.Google Scholar
  11. 11.
    Tayade, A. B., Dhar, P., Kumar, J., Sharma, M., Chaurasia, O. P., & Srivastava, R. B. (2013). Sequential determination of fat- and water-soluble vitamins in Rhodiola imbricata root from trans-Himalaya with rapid resolution liquid chromatography/tandem mass spectrometry. Analytica Chimica Acta, 789, 65–73.  https://doi.org/10.1016/j.aca.2013.05.062.Google Scholar
  12. 12.
    Tayade, A. B., Dhar, P., Kumar, J., Sharma, M., Chauhan, R. S., Chaurasia, O. P., & Srivastava, R. B. (2013). Chemometric profile of root extracts of Rhodiola imbricata Edgew. with hyphenated gas chromatography mass spectrometric technique. PLoS ONE, 8(1).  https://doi.org/10.1371/journal.pone.0052797.
  13. 13.
    Grech-Baran, M., Sykłowska-Baranek, K., & Pietrosiuk, A. (2015). Biotechnological approaches to enhance salidroside, rosin and its derivatives production in selected Rhodiola spp. in vitro cultures. Phytochemistry Reviews, 14(4), 657–674.  https://doi.org/10.1007/s11101-014-9368-y.Google Scholar
  14. 14.
    Khanum, F., Bawa, A. S., & Singh, B. (2005). Rhodiola rosea: a versatile adaptogen. Comprehensive Reviews in Food Science and Food Safety, 4(3), 55–62.  https://doi.org/10.1111/j.1541-4337.2005.tb00073.x.Google Scholar
  15. 15.
    Ma, L. Q., Gao, D. Y., Wang, Y. N., Wang, H. H., Zhang, J. X., Pang, X. B., & Wang, H. (2008). Effects of overexpression of endogenous phenylalanine ammonia-lyase (PALrs1) on accumulation of salidroside in Rhodiola sachalinensis. Plant Biology, 10(3), 323–333.  https://doi.org/10.1111/j.1438-8677.2007.00024.x.Google Scholar
  16. 16.
    Diwaker, D., Mishra, K. P., Ganju, L., & Singh, S. B. (2014). Rhodiola inhibits dengue virus multiplication by inducing innate immune response genes RIG-I, MDA5 and ISG in human monocytes. Archives of Virology, 159(8), 1975–1986.  https://doi.org/10.1007/s00705-014-2028-0.Google Scholar
  17. 17.
    Arora, R., Chawla, R., Sagar, R., Prasad, J., Singh, S., Kumar, R., & Sharma, R. K. (2005). Evaluation of radioprotective activities of Rhodiola imbricata Edgew—a high altitude plant. Molecular and Cellular Biochemistry, 273(1–2), 209–223.  https://doi.org/10.1007/s11010-005-0822-4.Google Scholar
  18. 18.
    Goel, P. H. C., Bala, M., Prasad, J., Singh, S., Agrawala, P. K., & Swahney, R. C. (2006). Radioprotection by Rhodiola imbricata in mice against whole-body lethal irradiation. Journal of Medicinal Food, 9(2), 154–160.  https://doi.org/10.1089/jmf.2006.9.154.Google Scholar
  19. 19.
    Gupta, A., Kumar, R., Upadhyay, N. K., Pal, K., Kumar, R., & Sawhney, R. C. (2007). Effects of Rhodiola imbricata on dermal wound healing. Planta Medica, 73(8), 774–777.  https://doi.org/10.1055/s-2007-981546.Google Scholar
  20. 20.
    Mishra, K. P., Padwad, Y. S., Jain, M., Karan, D., Ganju, L., & Sawhney, R. C. (2006). Aqueous extract of Rhodiola imbricata rhizome stimulates proinflammatory mediators via phosphorylated IκB and transcription factor nuclear factor-κB. Immunopharmacology and Immunotoxicology, 28(2), 201–212.  https://doi.org/10.1080/08923970600815139.Google Scholar
  21. 21.
    Mishra, K. P., Padwad, Y. S., Dutta, A., Ganju, L., Sairam, M., Banerjee, P. K., & Sawhney, R. C. (2008). Aqueous extract of Rhodiola imbricata rhizome inhibits proliferation of an erythroleukemic cell line K-562 by inducing apoptosis and cell cycle arrest at G2/M phase. Immunobiology, 213(2), 125–131.  https://doi.org/10.1016/j.imbio.2007.07.003.Google Scholar
  22. 22.
    Mishra, K. P., Ganju, L., Chanda, S., Karan, D., & Sawhney, R. C. (2009). Aqueous extract of Rhodiola imbricata rhizome stimulates toll-like receptor 4, granzyme-B and Th1 cytokines in vitro. Immunobiology, 214(1), 27–31.  https://doi.org/10.1016/j.imbio.2008.04.001.Google Scholar
  23. 23.
    Senthilkumar, R., Chandran, R., & Parimelazhagan, T. (2014). Hepatoprotective effect of Rhodiola imbricata rhizome against paracetamol-induced liver toxicity in rats. Saudi Journal of Biological Sciences, 21(5), 409–416.  https://doi.org/10.1016/j.sjbs.2014.04.001.Google Scholar
  24. 24.
    Llorent-Martínez, E. J., Spínola, V., Gouveia, S., & Castilho, P. C. (2015). HPLC-ESI-MS characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Industrial Crops and Products, 69, 80–90.  https://doi.org/10.1016/j.indcrop.2015.02.014.Google Scholar
  25. 25.
    Wiegant, F. A. C., Surinova, S., Ytsma, E., Langelaar-Makkinje, M., Wikman, G., & Post, J. A. (2009). Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology, 10(1), 27–42.  https://doi.org/10.1007/s10522-008-9151-9.Google Scholar
  26. 26.
    Wojdyło, A., Oszmiański, J., & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940–949.  https://doi.org/10.1016/j.foodchem.2007.04.038.Google Scholar
  27. 27.
    Yáñez, J. A., Remsberg, C. M., Takemoto, J. K., Vega-Villa, K. R., Andrews, P. K., Sayre, C. L., & Davies, N. M. (2012). Polyphenols and flavonoids: An overview. In flavonoid pharmacokinetics (pp. 1–69). Wiley-Blackwell.  https://doi.org/10.1002/9781118468524.ch1.
  28. 28.
    Avula, B., Wang, Y., Ali, Z., Smillie, T. J., Filion, V., Cuerrier, A., & Khan, I. A. (2009). RP-HPLC determination of phenylalkanoids and monoterpenoids in Rhodiola rosea and identification by LC-ESI-TOF. Biomedical Chromatography, 23(8), 865–872.  https://doi.org/10.1002/bmc.1198.Google Scholar
  29. 29.
    Ioset, K. N., Nyberg, N. T., Van Diermen, D., Malnoe, P., Hostettmann, K., Shikov, A. N., & Jaroszewski, J. W. (2011). Metabolic profiling of Rhodiola rosea rhizomes by 1H NMR spectroscopy. Phytochemical Analysis, 22(2), 158–165.  https://doi.org/10.1002/pca.1262.Google Scholar
  30. 30.
    Booker, A., Zhai, L., Gkouva, C., Li, S., & Heinrich, M. (2016). From traditional resource to global commodities: A comparison of Rhodiola species using NMR spectroscopy-metabolomics and HPTLC. Frontiers in Pharmacology, 7, 1–11.  https://doi.org/10.3389/fphar.2016.00254.Google Scholar
  31. 31.
    Bykov, V. A., Zapesochnaya, G. G., & Kurkin, V. A. (1999). Traditional and biotechnological aspects of obtaining medicinal preparations from Rhodiola rosea L. (a review). Pharmaceutical Chemistry Journal, 33(1), 29–40.Google Scholar
  32. 32.
    Panossian, A., Hamm, R., Wikman, G., & Efferth, T. (2014). Mechanism of action of Rhodiola, salidroside, tyrosol and triandrin in isolated neuroglial cells: An interactive pathway analysis of the downstream effects using RNA microarray data. Phytomedicine, 21(11), 1325–1348.  https://doi.org/10.1016/j.phymed.2014.07.008.Google Scholar
  33. 33.
    Chiang, H. M., Chen, H. C., Wu, C. S., Wu, P. Y., & Wen, K. C. (2015). Rhodiola plants: Chemistry and biological activity. Journal of Food and Drug Analysis, 23(3), 359–369.  https://doi.org/10.1016/j.jfda.2015.04.007.Google Scholar
  34. 34.
    Murti, S. K. (2001). Flora of cold deserts of western Himalaya, vol 1 Monocotyledons (p. 452). Calcutta: Botanical Survey of India.Google Scholar
  35. 35.
    Xu, J. F., Ying, P. Q., Han, A. M., & Su, Z. G. (1999). Enhanced salidroside production in liquid-cultivated compact callus aggregates of Rhodiola sachalinensis: Manipulation of plant growth regulators and sucrose. Plant Cell, Tissue and Organ Culture, 55(1), 53–58.  https://doi.org/10.1023/A:1026489515174.Google Scholar
  36. 36.
    Zhao, J., Hu, Q., Guo, Y.-Q., & Zhu, W.-H. (2001). Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Applied Microbiology and Biotechnology, 55(6), 693–698.  https://doi.org/10.1007/s002530000568.Google Scholar
  37. 37.
    Lindsey, K., & Yeoman, M. M. (1983). The relationship between growth rate, differentiation and alkaloid accumulation in cell cultures. Journal of Experimental Botany, 34(8), 1055–1065.  https://doi.org/10.1093/jxb/34.8.1055.Google Scholar
  38. 38.
    Zhao, J., Zhu, W.-H., Hu, Q., & Guo, Y.-Q. (2001). Compact callus cluster suspension cultures of Catharanthus roseus with enhanced indole alkaloid biosynthesis. In Vitro Cellular & Developmental Biology - Plant, 37(1), 68–72.  https://doi.org/10.1007/s11627-001-0013-2.Google Scholar
  39. 39.
    Ramachandra Rao, S., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101–153.  https://doi.org/10.1016/S0734-9750(02)00007-1.Google Scholar
  40. 40.
    Kolewe, M. E., Gaurav, V., & Roberts, S. C. (2008). Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Molecular Pharmaceutics, 5(2), 243–256.  https://doi.org/10.1021/mp7001494.Google Scholar
  41. 41.
    Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23(4), 283–333.  https://doi.org/10.1016/j.biotechadv.2005.01.003.Google Scholar
  42. 42.
    Gundlach, H., Müller, M. J., Kutchan, T. M., & Zenk, M. H. (1992). Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceedings of the National Academy of Sciences of the United States of America, 89(6), 2389–2393.  https://doi.org/10.1073/pnas.89.6.2389.Google Scholar
  43. 43.
    Reymond, P., & Farmer, E. E. (1998). Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology, 1(5), 404–411.  https://doi.org/10.1016/S1369-5266(98)80264-1.Google Scholar
  44. 44.
    Palazón, J., Cusidó, R. M., Bonfill, M., Morales, C., & Piñol, M. T. (2003). Inhibition of paclitaxel and baccatin III accumulation by mevinolin and fosmidomycin in suspension cultures of Taxus baccata. Journal of Biotechnology, 101(2), 157–163.  https://doi.org/10.1016/S0168-1656(02)00318-8.Google Scholar
  45. 45.
    Walker, T. S., Pal Bais, H., & Vivanco, J. M. (2002). Jasmonic acid-induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry, 60(3), 289–293.  https://doi.org/10.1016/S0031-9422(02)00074-2.Google Scholar
  46. 46.
    Gadzovska, S., Maury, S., Delaunay, A., Spasenoski, M., Joseph, C., & Hagège, D. (2007). Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell, Tissue and Organ Culture, 89(1), 1–13.  https://doi.org/10.1007/s11240-007-9203-x.Google Scholar
  47. 47.
    Yu, K.-W., Gao, W., Hahn, E.-J., & Paek, K.-Y. (2002). Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochemical Engineering Journal, 11(2), 211–215.  https://doi.org/10.1016/S1369-703X(02)00029-3.Google Scholar
  48. 48.
    Zaragoza-Martínez, F., Lucho-Constantino, G. G., Ponce-Noyola, T., Esparza-García, F., Poggi-Varaldo, H., Cerda-García-Rojas, C. M., & Ramos-Valdivia, A. C. (2016). Jasmonic acid stimulates the oxidative responses and triterpene production in Jatropha curcas cell suspension cultures through mevalonate as biosynthetic precursor. Plant Cell, Tissue and Organ Culture, 127(1), 47–56.  https://doi.org/10.1007/s11240-016-1028-z.Google Scholar
  49. 49.
    Saiman, M. Z., Mustafa, N. R., Choi, Y. H., Verpoorte, R., & Schulte, A. E. (2015). Metabolic alterations and distribution of five-carbon precursors in jasmonic acid-elicited Catharanthus roseus cell suspension cultures. Plant Cell, Tissue and Organ Culture, 122(2), 351–362.  https://doi.org/10.1007/s11240-015-0773-8.Google Scholar
  50. 50.
    Kapoor, S., Raghuvanshi, R., Bhardwaj, P., Sood, H., Saxena, S., & Chaurasia, O. P. (2018). Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricata Edgew. Journal of Photochemistry and Photobiology B: Biology, 183, 258–265.  https://doi.org/10.1016/j.jphotobiol.2018.04.018.Google Scholar
  51. 51.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497.  https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.Google Scholar
  52. 52.
    Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50(1), 151–158.  https://doi.org/10.1016/0014-4827(68)90403-5.Google Scholar
  53. 53.
    Sanchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L., & Jacobo-Velazquez, D. A. (2013). The Folin-Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Analytical Methods, 5(21), 5990–5999.  https://doi.org/10.1039/C3AY41125G.Google Scholar
  54. 54.
    Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559.  https://doi.org/10.1016/S0308-8146(98)00102-2.Google Scholar
  55. 55.
    Yesmin, M. N., Uddin, S. N., Mubassara, S., & Akond, M. A. (2008). Antioxidant and antibacterial activities of Calotropis procera Linn. American-Eurasian Journal of Agricultural & Environmental Sciences, 4(5), 550–553.Google Scholar
  56. 56.
    Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341.  https://doi.org/10.1006/abio.1999.4019.Google Scholar
  57. 57.
    Tepe, B., Donmez, E., Unlu, M., Candan, F., Daferera, D., Vardar-Unlu, G., & Sokmen, A. (2004). Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex Benth.) and Salvia multicaulis (Vahl). Food Chemistry, 84(4), 519–525.  https://doi.org/10.1016/S0308-8146(03)00267-X.Google Scholar
  58. 58.
    National Committee for Clinical Laboratory Standards. (1999). Methods for determining bactericidal activity of antimicrobial agents; Approved Guideline NCCLS Document M26-A Vol. 19. Wayne: NCCLS.Google Scholar
  59. 59.
    Clinical and Laboratory Standards Institute. (2014). Performance standards for antimicrobial susceptibility testing. Twenty fourth Informational Supplement. CLSI document M100–24. Wayne: CLSI.Google Scholar
  60. 60.
    Abousalim, A. (1991). In vitro propagation of pistachio (Pistacia vera L. cv Mateur). Effects of culture media. Actes Inst Agron Vet, 11(3), 23–26.Google Scholar
  61. 61.
    Nagella, P., & Murthy, H. N. (2010). Establishment of cell suspension cultures of Withania somnifera for the production of withanolide A. Bioresource Technology, 101(17), 6735–6739.  https://doi.org/10.1016/j.biortech.2010.03.078.Google Scholar
  62. 62.
    Nagella, P., Chung, I., & Murthy, H. N. (2011). In vitro production of gymnemic acid from cell suspension cultures of Gymnema sylvestre R. Br. Engineering in Life Sciences, 11(5), 537–540.  https://doi.org/10.1002/elsc.201000167.Google Scholar
  63. 63.
    Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology, 57(1), 675–709.  https://doi.org/10.1146/annurev.arplant.57.032905.105441.Google Scholar
  64. 64.
    Wang, Y., & Weathers, P. J. (2007). Sugars proportionately affect artemisinin production. Plant Cell Reports, 26(7), 1073–1081.  https://doi.org/10.1007/s00299-006-0295-2.Google Scholar
  65. 65.
    Ali, M., Abbasi, B. H., Ahmad, N., Ali, S. S., Ali, S., & Ali, G. S. (2016). Sucrose-enhanced biosynthesis of medicinally important antioxidant secondary metabolites in cell suspension cultures of Artemisia absinthium L. Bioprocess and Biosystems Engineering, 39(12), 1945–1954.  https://doi.org/10.1007/s00449-016-1668-8.Google Scholar
  66. 66.
    Slone, J. H., & Buckhout, T. J. (1991). Sucrose-dependent H+ transport in plasma-membrane vesicles isolated from sugarbeet leaves (Beta vulgaris L.). Planta, 183(4), 584–589.  https://doi.org/10.1007/BF00194280.Google Scholar
  67. 67.
    Liu, C.-Z., & Cheng, X.-Y. (2008). Enhancement of phenylethanoid glycosides biosynthesis in cell cultures of Cistanche deserticola by osmotic stress. Plant Cell Reports, 27(2), 357–362.  https://doi.org/10.1007/s00299-007-0443-3.Google Scholar
  68. 68.
    Krstić-Milošević, D., Janković, T., Vinterhalter, B., Menković, N., Aljančić, I., & Vinterhalter, D. (2013). Influence of carbohydrate source on xanthone content in root cultures of Gentiana dinarica Beck. Plant Growth Regulation, 71(2), 147–155.  https://doi.org/10.1007/s10725-013-9815-6.Google Scholar
  69. 69.
    Xu, J., Su, Z., & Feng, P. (1998). Suspension culture of compact callus aggregate of Rhodiola sachalinensis for improved salidroside production. Enzyme and Microbial Technology, 23(1–2), 20–27.  https://doi.org/10.1016/S0141-0229(98)00011-8.Google Scholar
  70. 70.
    Bais, H. P., Walker, T. S., McGrew, J. J., & Vivanco, J. M. (2002). Factors affecting growth of cell suspension cultures of Hypericum perforatum L. (St. John’s wort) and production of hypericin. In Vitro Cellular & Developmental Biology - Plant, 38(1), 58–65.  https://doi.org/10.1079/IVP2001253.Google Scholar
  71. 71.
    Weremczuk-Jeżyna, I., Skała, E., Olszewska, M. A., Kiss, A. K., Balcerczak, E., Wysokińska, H., & Kicel, A. (2016). The identification and quantitative determination of rosmarinic acid and salvianolic acid B in hairy root cultures of Dracocephalum forrestii W.W. Smith. Industrial Crops and Products, 91, 125–131.  https://doi.org/10.1016/j.indcrop.2016.07.002.Google Scholar
  72. 72.
    Goyal, S., & Ramawat, K. G. (2008). Synergistic effect of morphactin on cytokinin-induced production of isoflavonoids in cell cultures of Pueraria tuberosa (Roxb. ex. Willd.) DC. Plant Growth Regulation, 55(3), 175–181.  https://doi.org/10.1007/s10725-008-9271-x.Google Scholar
  73. 73.
    Bienaimé, C., Melin, A., Bensaddek, L., Attoumbré, J., Nava-Saucedo, E., & Baltora-Rosset, S. (2015). Effects of plant growth regulators on cell growth and alkaloids production by cell cultures of Lycopodiella inundata. Plant Cell, Tissue and Organ Culture (PCTOC), 123(3), 523–533.  https://doi.org/10.1007/s11240-015-0856-6.Google Scholar
  74. 74.
    Verpoorte, R., van der Heijden, R., van Gulik, W. M., & ten Hoopen, H. J. G. (1991). Plant biotechnology for the production of alkaloids: Present status and prospects. In A. Brossi (Ed.), The alkaloids: Chemistry and pharmacology (Vol. 40, pp. 1–187). Academic Press.  https://doi.org/10.1016/S0099-9598(08)60268-0.
  75. 75.
    Tan, D., Sun, X., & Zhang, J. (2014). Age-dependent and jasmonic acid-induced laticifer-cell differentiation in anther callus cultures of rubber tree. Planta, 240(2), 337–344.  https://doi.org/10.1007/s00425-014-2086-2.Google Scholar
  76. 76.
    Creelman, R. A., & Mullet, J. E. (1997). Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 48(1), 355–381.  https://doi.org/10.1146/annurev.arplant.48.1.355.Google Scholar
  77. 77.
    Świątek, A., Van Dongen, W., Esmans, E. L., & Van Onckelen, H. (2004). Metabolic fate of jasmonates in tobacco bright yellow-2 cells. Plant Physiology, 135(1), 161–172.Google Scholar
  78. 78.
    Pauwels, L., Morreel, K., De Witte, E., Lammertyn, F., Van Montagu, M., Boerjan, W., & Goossens, A. (2008). Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proceedings of the National Academy of Sciences, 105(4), 1380–1385.Google Scholar
  79. 79.
    Noir, S., Bömer, M., Takahashi, N., Ishida, T., Tsui, T.-L., Balbi, V., & Devoto, A. (2013). Jasmonate controls leaf growth by repressing cell proliferation and the onset of endoreduplication while maintaining a potential stand-by mode. Plant Physiology, 161(4), 1930–1951.  https://doi.org/10.1104/pp.113.214908.Google Scholar
  80. 80.
    Yang, D.-L., Yao, J., Mei, C.-S., Tong, X.-H., Zeng, L.-J., Li, Q., & He, S. Y. (2012). Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences, 109(19), E1192–E1200.  https://doi.org/10.1073/pnas.1201616109.Google Scholar
  81. 81.
    Yukimune, Y., Tabata, H., Higashi, Y., & Hara, Y. (1996). Methyl jasmonate-induced overproduction of paclitaxel and Baccatin III in Taxus cell suspension cultures. Nature Biotechnology, 14(9), 1129–1132.  https://doi.org/10.1038/nbt0996-1129.Google Scholar
  82. 82.
    Reymond, P., Weber, H., Damond, M., & Farmer, E. E. (2000). Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. The Plant Cell, 12(5), 707–719.Google Scholar
  83. 83.
    Yu, H.-S., Ma, L.-Q., Zhang, J.-X., Shi, G.-L., Hu, Y.-H., & Wang, Y.-N. (2011). Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiola sachalinensis. Phytochemistry, 72(9), 862–870.  https://doi.org/10.1016/j.phytochem.2011.03.020.Google Scholar
  84. 84.
    Bhat, W. W., Dhar, N., Razdan, S., Rana, S., Mehra, R., Nargotra, A., & Lattoo, S. K. (2013). Molecular characterization of UGT94F2 and UGT86C4, two glycosyltransferases from Picrorhiza kurrooa: Comparative structural insight and evaluation of substrate recognition. PLoS One, 8(9), 1–18.  https://doi.org/10.1371/journal.pone.0073804.Google Scholar
  85. 85.
    Mizukami, H., Tabira, Y., & Ellis, B. E. (1993). Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Reports, 12(12), 706–709.  https://doi.org/10.1007/BF00233424.Google Scholar
  86. 86.
    Nafie, E., Hathout, T., & Al Mokadem, A. S. (2011). Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. Brazilian Journal of Plant Physiology, 23(2), 161–174.Google Scholar
  87. 87.
    Dixon, R. A., Achnine, L., Kota, P., Liu, C., Reddy, M. S. S., & Wang, L. (2002). The phenylpropanoid pathway and plant defence—A genomics perspective. Molecular Plant Pathology, 3(5), 371–390.  https://doi.org/10.1046/j.1364-3703.2002.00131.X.Google Scholar
  88. 88.
    De Geyter, N., Gholami, A., Goormachtig, S., & Goossens, A. (2012). Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 17(6), 349–359.  https://doi.org/10.1016/j.tplants.2012.03.001.Google Scholar
  89. 89.
    Rischer, H., Orešič, M., Seppänen-Laakso, T., Katajamaa, M., Lammertyn, F., Ardiles-Diaz, W., & Goossens, A. (2006). Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proceedings of the National Academy of Sciences, 103(14), 5614 LP–5615619 http://www.pnas.org/content/103/14/5614.abstract.Google Scholar
  90. 90.
    Goossens, A., Häkkinen, S. T., Laakso, I., Seppänen-Laakso, T., Biondi, S., De Sutter, V., & Oksman-Caldentey, K.-M. (2003). A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proceedings of the National Academy of Sciences, 100(14), 8595 LP–8598600 http://www.pnas.org/content/100/14/8595.abstract.Google Scholar
  91. 91.
    Pauwels, L., Inzé, D., & Goossens, A. (2009). Jasmonate-inducible gene: What does it mean? Trends in Plant Science, 14(2), 87–91.  https://doi.org/10.1016/j.tplants.2008.11.005.Google Scholar
  92. 92.
    Wasternack, C., & Hause, B. (2013). Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Annals of Botany, 111(6), 1021–1058.  https://doi.org/10.1093/aob/mct067.Google Scholar
  93. 93.
    Orozco-Cardenas, M., & Ryan, C. A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences, 96(11), 6553–6557.Google Scholar
  94. 94.
    Orozco-Cárdenas, M. L., Narváez-Vásquez, J., & Ryan, C. A. (2001). Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. The Plant Cell, 13(1), 179–191.Google Scholar
  95. 95.
    Wolucka, B. A., Goossens, A., & Inzé, D. (2005). Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. Journal of Experimental Botany, 56(419), 2527–2538.  https://doi.org/10.1093/jxb/eri246.Google Scholar
  96. 96.
    Nishikawa, F., Kato, M., Hyodo, H., Ikoma, Y., Sugiura, M., & Yano, M. (2003). Ascorbate metabolism in harvested broccoli. Journal of Experimental Botany, 54(392), 2439–2448.  https://doi.org/10.1093/jxb/erg283.Google Scholar
  97. 97.
    Naidu, K. A. (2003). Vitamin C in human health and disease is still a mystery? An overview. Nutrition Journal, 2(1), 7.  https://doi.org/10.1186/1475-2891-2-7.Google Scholar
  98. 98.
    Padayatty, S. J., Katz, A., Wang, Y., Eck, P., Kwon, O., Lee, J.-H., & Levine, M. (2003). Vitamin C as an antioxidant: Evaluation of its role in disease prevention. Journal of the American College of Nutrition, 22(1), 18–35.  https://doi.org/10.1080/07315724.2003.10719272.Google Scholar
  99. 99.
    Pandino, G., Meneghini, M., Tavazza, R., Lombardo, S., & Mauromicale, G. (2017). Phytochemicals accumulation and antioxidant activity in callus and suspension cultures of Cynara scolymus L. Plant Cell, Tissue and Organ Culture, 128(1), 223–230.  https://doi.org/10.1007/s11240-016-1102-6.Google Scholar
  100. 100.
    Sarkate, A., Banerjee, S., Mir, J. I., Roy, P., & Sircar, D. (2017). Antioxidant and cytotoxic activity of bioactive phenolic metabolites isolated from the yeast-extract treated cell culture of apple. Plant Cell, Tissue and Organ Culture, 130(3), 641–649.  https://doi.org/10.1007/s11240-017-1253-0.Google Scholar
  101. 101.
    Tapiero, H., Tew, K. D., Ba, G. N., & Mathé, G. (2002). Polyphenols: Do they play a role in the prevention of human pathologies? Biomedicine & Pharmacotherapy, 56(4), 200–207.  https://doi.org/10.1016/S0753-3322(02)00178-6.Google Scholar
  102. 102.
    Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews, 12(4), 564–582.Google Scholar
  103. 103.
    Thiruvengadam, M., Praveen, N., Maria John, K. M., Yang, Y.-S., Kim, S.-H., & Chung, I.-M. (2014). Establishment of Momordica charantia hairy root cultures for the production of phenolic compounds and determination of their biological activities. Plant Cell, Tissue and Organ Culture (PCTOC), 118(3), 545–557.  https://doi.org/10.1007/s11240-014-0506-4.Google Scholar
  104. 104.
    Bahri-Sahloul, R., Ben Fredj, R., Boughalleb, N., Shriaa, J., Saguem, S., Hilbert, J.-L., & Harzallah-Skhiri, F. (2014). Phenolic composition and antioxidant and antimicrobial activities of extracts obtained from Crataegus azarolus L. var. aronia (Willd.) Batt. ovaries calli. Journal of Botany.Google Scholar
  105. 105.
    Bajpai, V. K., Rahman, A., Dung, N. T., Huh, M. K., & Kang, S. C. (2008). In vitro inhibition of food spoilage and foodborne pathogenic bacteria by essential oil and leaf extracts of Magnolia liliflora Desr. Journal of Food Science, 73(6), M314–M320.  https://doi.org/10.1111/j.1750-3841.2008.00841.x.Google Scholar
  106. 106.
    Banasiuk, R., Kawiak, A., & Krölicka, A. (2012). In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. Biotechnologia, 93(2), 87–96.  https://doi.org/10.5114/bta.2012.46572.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sahil Kapoor
    • 1
  • Ankita Sharma
    • 1
  • Pushpender Bhardwaj
    • 1
  • Hemant Sood
    • 2
    Email author
  • Shweta Saxena
    • 1
  • Om Prakash Chaurasia
    • 1
  1. 1.Defence Institute of High Altitude Research (DRDO)Leh-LadakhIndia
  2. 2.Department of Biotechnology and BioinformaticsJaypee University of Information TechnologyWaknaghat (Solan)India

Personalised recommendations