Applied Biochemistry and Biotechnology

, Volume 187, Issue 4, pp 1204–1219 | Cite as

Overexpression of StGA2ox1 Gene Increases the Tolerance to Abiotic Stress in Transgenic Potato (Solanum tuberosum L.) Plants

  • Jianbin Shi
  • Jian Wang
  • Ning Wang
  • Hong Zhou
  • Qinghua Xu
  • Gentu YanEmail author


It has been known that GA2ox is one kind of key enzyme gene in the gibberellin synthesis pathway, which plays important regulatory roles throughout plant whole growth and development. In this article, one of the GA2ox family genes, designated StGA2ox1, was isolated from potato (Solanum tuberosum L.). The full length of cDNA is 1005 bp, and the cDNA corresponds to a protein of 334 amino acids; this protein was classified in a group with NtGA2ox3 based on multiple sequence alignments and phylogenetic characterization. A plant expression vector pCAEZ1383-StGA2ox1 was established. qRT-PCR showed that the expression of RD28, DREB1, WRKY1, and SnRK2 genes in StGA2ox1 transgenic plant is higher than that in non-transformed control under dehydration, low temperature conditions, and abscisic acid treatments. Overexpression of StGA2ox1 cDNA in transgenic potato plants exhibited an improved salt, drought, exogenous hormone, and low temperature stress tolerance in comparison to the non-transformed plant. The enhanced stress tolerance may be associated with the subsequent accumulation of proline osmoprotectant in addition to a better control of chlorophyll, carotenoids, and water loss. These data suggest that the StGA2ox1 is involved in the regulation of plant growth and tolerance in potato by regulating the synthesis of gibberellin.


Potato GA2ox1 Cloning Generation and transformation Abiotic stress 



This work was supported by the fund of basic research project of Qinghai province (2013-Z-720), basal research fund of central public-interest scientific institution (161016201707), National key laboratory of cotton biology (CB2017C14), and cotton industry technology system of Henan province (S2013-07-G01).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Huang, J., Tang, D., Shen, Y., Qin, B., Hong, L., You, A., Li, M., Wang, X., Yu, H., & Gu, M. (2010). Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). Journal of Genetics and Genomics, 37(1), 23–36.Google Scholar
  2. 2.
    Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G. K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ashikari, M., & Matsuoka, M. (2004). An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiology, 134(4), 1642–1653.Google Scholar
  3. 3.
    Ellen, H. C., Stephen, G., Andrew, L. P., & Peter, H. (2014). The role of gibberellin signaling in plant responses to abiotic stress. Journal of Experimental Biology, 217, 67–75.Google Scholar
  4. 4.
    Olszewski, N., Sun, T.-p., & Gubler, F. (2002). Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell, 14, 61–80.Google Scholar
  5. 5.
    Yamaguchi, S. (2008). Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 59(1), 225–251.Google Scholar
  6. 6.
    Otani, M., Meguro, S., Gondaira, H., Hayashi, M., Saito, M., Han, D. S., Inthima, P., Supaibulwatana, K., Mori, S., Jikumaru, Y., Kamiya, Y., Li, T., Niki, T., Nishijima, T., Koshioka, M., & Nakano, M. (2013). Overexpression of the gibberellin 2-oxidase gene from Torenia fournieri induces dwarf phenotypes in the liliaceous monocotyledon Tricyrtis sp. Journal of Plant Physiology, 170(16), 1416–1423.Google Scholar
  7. 7.
    Thomas, S. G., Phillips, A. L., & Hedden, P. (1999). Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4698–4703.Google Scholar
  8. 8.
    Martin, D., Proebsting, W., & Hedden, P. (1999). The SLENDER gene of pea encodes a gibberellin 2-oxidase. Plant Physiology, 121(3), 775–781.Google Scholar
  9. 9.
    Busov, V. B., Meilan, R., Pearce, D. W., Ma, C., Rood, S. B., & Strauss, S. H. (2003). Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiology, 132(3), 1283–1291.Google Scholar
  10. 10.
    Schomburg, F. M., Bizzell, C. M., Lee, D. J., Zeevaart, J. A. D., & Amasino, R. M. (2003). Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell, 15(1), 151–163.Google Scholar
  11. 11.
    Lee, D. J., & Zeevaart, J. A. D. (2005). Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiology, 138, 243–254.Google Scholar
  12. 12.
    Dijkstra, C., Adams, E., Bhattacharya, A., Page, A. F., Anthony, P., Kourmpetli, S., Power, J. B., Lowe, K. C., Thomas, S. G., Hedden, P., Phillips, A. L., & Davey, M. R. (2008). Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species. Plant Cell Reports, 27(3), 463–470.Google Scholar
  13. 13.
    Zhou, B., Peng, D., Lin, J., Huang, X., Peng, W., He, R., Guo, M., Tang, D., Zhao, X., & Liu, X. (2011). Heterologous expression of a gibberellin 2-oxidase gene from Arabidopsis thaliana enhanced the photosynthesis capacity in Brassica napus L. Journal of Plant Biology, 54(1), 23–32.Google Scholar
  14. 14.
    Chen, W. J., & Zhu, T. (2004). Networks of transcription factors with roles in environmental stress response. Trends in Plant Science, 9(12), 591–596.Google Scholar
  15. 15.
    Lee, H., Xiong, L., Ishitani, M., Stevenson, B., & Zhu, J. K. (1999). Cold regulated gene expression and freezing tolerance in an Arabidopsis thaliana mutant. Plant Journal, 17(3), 301–308.Google Scholar
  16. 16.
    Ramanjulu, S., & Bartels, D. (2002). Drought and desiccation induced modulation of gene expression in plants. Plant, Cell and Environment, 25(2), 141–151.Google Scholar
  17. 17.
    Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular response and the tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57(1), 781–803.Google Scholar
  18. 18.
    Yang, D. L., Li, Q., Deng, Y. W., Lou, Y. G., Wang, M. Y., Zhou, G. X., Zhang, Y. Y., & He, Z. H. (2008). Altered disease development in the eui mutants and Eui overexpressors indicates that gibberellins negatively regulate rice basal disease resistance. Molecular Plant, 1(3), 528–537.Google Scholar
  19. 19.
    Achard, P., Cheng, H., De Grauwe, L., et al. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science, 311, 91–94.Google Scholar
  20. 20.
    Camire, M. E., Kubow, S., & Donnelly, D. J. (2009). Potatoes and human health. Critical Reviews in Food Science and Nutrition, 49(10), 823–840.Google Scholar
  21. 21.
    Bouaziz, D., Pirrello, J., Charfeddine, M., Hammami, A., Jbir, R., Dhieb, A., Bouzayen, M., & Gargouri-Bouzid, R. (2013). Overexpression of StDREB1 transcription factor increases tolerance to salt in transgenic potato plants. Molecular Biotechnology, 54(3), 803–817.Google Scholar
  22. 22.
    Tan, B., Li, D. L., Xu, S. X., Fan, G. E., Fan, J., & Guo, W. W. (2009). Highly efficient transformation of GFP and KUN genes into precocious trifoliate orange (Poncirus trifoliata L. Raf), a potential model genopype for functional genomics studies in Citrus. Tree Genetics & Genomes, 5(3), 529–537.Google Scholar
  23. 23.
    Leung, J., Merlot, S., Giraudat, J., et al. (1997). The Arabidopsis ABSCISIC ACIDINSENSITIVE2(ABI2)and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell, 9(5), 759–771.Google Scholar
  24. 24.
    Shin, D., Moon, S.-J., Han, S., Kim, B.-G., Park, S. R., Lee, S.-K., Yoon, H.-J., Lee, H. E., Kwon, H.-B., Baek, D., Yi, B. Y., & Byun, M.-O. (2011). Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiology, 155(1), 421–432.Google Scholar
  25. 25.
    Kim, Y., Yang, K. S., Sun, H. R., et al. (2007). Molecular characterization of a cDNA encoding DREB-binding transcription factor from dehydration treated fibrous roots of sweet potato. Plant Physiology and Biochemistry, 46, 196–204.Google Scholar
  26. 26.
    Moon, S. J., Han, S. Y., Byun, M. O., et al. (2014). Ectopic expression of CaWRKY1, a pepper transcription factor, enhances drought tolerance in transgenic potato plants. Journal of Plant Biology, 57(3), 198–207.Google Scholar
  27. 27.
    Liang, Y., Ji, W., Gao, P., et al. (2012). GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One, 7, 1–11.Google Scholar
  28. 28.
    Huang, S. S., Raman, A. S., Ream, J. E., Fujiwara, H., Cerny, R. E., & Brown, S. M. (1998). Overexpression of GA20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiology, 118(3), 773–781.Google Scholar
  29. 29.
    Xu, Y. L., Li, L., Gage, D. A., & Zeevaart, J. A. D. (1999). Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. Plant Cell, 11(5), 927–935.Google Scholar
  30. 30.
    Eriksson, M. E., Israelsson, M., Olsson, O., & Moritz, T. (2000). Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nature Biotechnology, 18(7), 784–788.Google Scholar
  31. 31.
    Vidal, A. M., Ben-Cheikh, W., Talón, M., & García-Martínez, J. L. (2003). Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid. Planta, 217(3), 442–448.Google Scholar
  32. 32.
    Krugman, T., Peleg, Z., Quansah, L., Chagué, V., Korol, A. B., Nevo, E., Saranga, Y., Fait, A., Chalhoub, B., & Fahima, T. (2011). Alteration in expression of hormone-related genes in wild emmer wheat roots associated with drought adaptation mechanisms. Functional & Integrative Genomics, 11(4), 565–583.Google Scholar
  33. 33.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology, 15, 473–497.Google Scholar
  34. 34.
    Michener, C. D., & Sokal, R. R. (1957). A quantitative approach to a problem of classification. Evolution, 11, 490–499.Google Scholar
  35. 35.
    Bouaziz, D., Ayadi, M., Bidani, A., Rouis, S., Nouri-Ellouz, O., Jellouli, R., Drira, N., & Gargouri-Bouzid, R. (2009). A stable cytosolic expression of VH antibody fragment directed against PVY NIa protein in transgenic potato plant confers partial protection against the virus. Plant Science, 176(4), 489–496.Google Scholar
  36. 36.
    Dellaporta, S. L., Woods, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1, 19–21.Google Scholar
  37. 37.
    Bézier, A., Lambert, B., & Baillieul, F. (2002). Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. European Journal of Plant Pathology, 108(2), 111–120.Google Scholar
  38. 38.
    Thomas, C., Meyer, D., & Wolff, M. (2003). Molecular characterization and spatial expression of the sunflower ABP1 gene. Plant Molecular Biology, 52(5), 1025–1036.Google Scholar
  39. 39.
    Gao, Z.-H., Wei, J.-H., Yang, Y., Zhang, Z., & Zhao, W.-T. (2012). Selection and validation of reference genes for studying stress-related agarwood formation of Aquilaria sinensis. Plant Cell Reports, 31(9), 1759–1768.Google Scholar
  40. 40.
    Roberto, D., & Kenneth, C. H. (2011). Actin structure and function. Annual Review of Biophysics, 40, 169–186.Google Scholar
  41. 41.
    Arnon, D. L. (1949). A copper enzyme is isolated chloroplast polyphenol oxidase in Beta vulgaries. Plant Physiology, 24(1), 1–15.Google Scholar
  42. 42.
    Bates, L. E., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39(1), 205–207.Google Scholar
  43. 43.
    Yamasaki, S., & Dillenburg, L. C. (1999). Measurements of leaf relative water content in Araucaria angustifolia. Revista Brasileira de Fisiologia Vegetal, 11, 69–75.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Cotton BiologyInstitute of Cotton Research of CAASAnyangChina
  2. 2.Key Lab of Qinghai-Tibet Plateau Biotechnology/Key Laboratory of Germplasm Innovation and Utilization of Plateau Crop, Qinghai Academy of Agricultural and Forestry SciencesQinghai UniversityXiningChina

Personalised recommendations