Applied Biochemistry and Biotechnology

, Volume 187, Issue 2, pp 556–569 | Cite as

Half Sandwich Rhodium(III) and Iridium(III) Complexes as Cytotoxic and Metallonuclease Agents

  • Pankajkumar A. Vekariya
  • Parag S. Karia
  • Bhupesh S. Bhatt
  • Mohan N. PatelEmail author


Half sandwich complexes of the type [(η5-C5Me5)M(L1–3)Cl]Cl.2H2O were synthesized using [{(η5-C5Me5)M(μ-Cl)Cl}2], where M = Rh(III)/Ir(III) and L1–3 = pyrimidine-based ligands. The complexes were characterized by spectral analysis. DNA interaction studies by absorption titration and hydrodynamic measurement and suggest intercalative mode of binding of complexes with CT-DNA. The molecular docking study also supports intercalation of the complexes between the stacks of nucleotide base pairs. The gel electrophoresis assay demonstrated the ability of the complexes to interact and cleave plasmid DNA. Minimum inhibitory concentrations (MIC) of the complexes were investigated by the microdilution broth method. The cytotoxic properties of the metal complexes were evaluated using brine shrimp lethality bioassay.


Half sandwich compounds Rh(III)/Ir(III) metal complexes NMR Molecular docking 



We are thankful to the Head, Department of Chemistry, Sardar Patel University, India for making it convenient to work in a laboratory.

Funding Information

This study was financially supported by the University Grant Commission for providing under the scheme “UGC-CAS” and BSR One Time Grant.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2835_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2707 kb)


  1. 1.
    Gubendran, A., Kesavan, M. P., Ayyanaar, S., Mitu, L., Athappan, P., & Rajesh, J. (2017). Non-enolisable Knoevenagel condensate appended Schiff bases-metal (II) complexes: Spectral characteristics, DNA-binding and nuclease activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 181, 39–46.Google Scholar
  2. 2.
    Liu, J.-B., Yang, C., Ko, C.-N., Vellaisamy, K., Yang, B., Lee, M.-Y., Leung, C.-H., & Ma, D.-L. (2017). A long lifetime iridium(III) complex as a sensitive luminescent probe for bisulfite detection in living zebrafish. Sensors and Actuators B: Chemical, 243, 971–976.Google Scholar
  3. 3.
    Gasser, G., Ott, I., & Metzler-Nolte, N. (2011). Organometallic Anticancer Compounds. Journal of Medicinal Chemistry, 54(1), 3–25.Google Scholar
  4. 4.
    Johnstone, T. C., Suntharalingam, K., & Lippard, S. J. (2016). The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chemical Reviews, 116(5), 3436–3486.Google Scholar
  5. 5.
    Muhammad, N., Sadia, N., Zhu, C., Luo, C., Guo, Z., & Wang, X. (2017). Biotin-tagged platinum(iv) complexes as targeted cytostatic agents against breast cancer cells. Chemical Communications, 53(72), 9971–9974.Google Scholar
  6. 6.
    Xu, G., Zhao, J., Gou, S., & Pang, J. (2015). Antitumor platinum(II) complexes of N-cyclobutyl-1R,2R-diaminocyclohexane with dicarboxylates as leaving groups. Bioorganic & Medicinal Chemistry Letters, 25(2), 221–224.Google Scholar
  7. 7.
    Leonidova, A., & Gasser, G. (2014). Underestimated potential of organometallic rhenium complexes as anticancer agents. ACS Chemical Biology, 9(10), 2180–2193.Google Scholar
  8. 8.
    Liu, Z., & Sadler, P. J. (2014). Organoiridium complexes: anticancer agents and catalysts. Accounts of Chemical Research, 47(4), 1174–1185.Google Scholar
  9. 9.
    Tian, M., Li, J., Zhang, S., Guo, L., He, X., Kong, D., Zhang, H., & Liu, Z. (2017). Half-sandwich ruthenium(ii) complexes containing N^N-chelated imino-pyridyl ligands that are selectively toxic to cancer cells. Chemical Communications, 53(95), 12810–12813.Google Scholar
  10. 10.
    Hegde, D., Dodamani, S., Kumbar, V., Jalalpure, S., & Gudasi, K. B. (2017). Synthesis, crystal structure, DNA interaction and anticancer evaluation of pyruvic acid derived hydrazone and its transition metal complexes. Applied Organometallic Chemistry, 31(12).Google Scholar
  11. 11.
    Wang, X. L., Zheng, K., Wang, L. Y., Li, Y. T., Wu, Z. Y., & Yan, C. W. (2016). Synthesis and structure of a new ternary monocopper(II) complex containing mixed ligands of 2,2′-diamino-4,4′-bithiazole and picrate:in vitroanticancer activity, molecular docking and reactivity towards DNA. Applied Organometallic Chemistry, 30(9), 730–739.Google Scholar
  12. 12.
    Nagaj, J., Kołkowska, P., Bykowska, A., Komarnicka, U. K., Kyzioł, A., & Jeżowska-Bojczuk, M. (2015). Interaction of methotrexate, an anticancer agent, with copper(II) ions: coordination pattern, DNA-cleaving properties and cytotoxic studies. Medicinal Chemistry Research, 24(1), 115–123.Google Scholar
  13. 13.
    Ahmadi, F., Saberkari, M., Abiri, R., Motlagh, H. M., & Saberkari, H. (2013). In vitro evaluation of Zn–Norfloxacin complex as a potent cytotoxic and antibacterial agent, proposed model for DNA binding. Applied Biochemistry and Biotechnology, 170(4), 988–1009.Google Scholar
  14. 14.
    Heydari, M., Moghadam, M. E., Tarlani, A., & Farhangian, H. (2017). DNA as a target for anticancer Phen-Imidazole Pd(II) complexes. Applied Biochemistry and Biotechnology, 182(1), 110–127.Google Scholar
  15. 15.
    Vellaisamy, K., Li, G., Ko, C.-N., Zhong, H.-J., Fatima, S., Kwan, H.-Y., Wong, C.-Y., Kwong, W.-J., Tan, W., & Leung, C.-H. (2018). Cell imaging of dopamine receptor using agonist labeling iridium(iii) complex. Chemical Science, 9(5), 1119–1125.Google Scholar
  16. 16.
    Wang, W., Vellaisamy, K., Li, G., Wu, C., Ko, C.-N., Leung, C.-H., & Ma, D.-L. (2017). Development of a long-lived luminescence probe for visualizing β-galactosidase in ovarian carcinoma cells. Analytical Chemistry, 89(21), 11679–11684.Google Scholar
  17. 17.
    Liu, L.-J., Wang, W., Huang, S.-Y., Hong, Y., Li, G., Lin, S., Tian, J., Cai, Z., Wang, H.-M. D., & Ma, D.-L. (2017). Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium(iii) metal-based compound. Chemical Science, 8(7), 4756–4763.Google Scholar
  18. 18.
    Pouryasin, Z., Yousefi, R., Nabavizadeh, S. M., Rashidi, M., Hamidizadeh, P., Alavianmehr, M.-M., & Moosavi-Movahedi, A. A. (2014). Anticancer and DNA binding activities of platinum (IV) complexes; importance of leaving group departure rate. Applied Biochemistry and Biotechnology, 172(5), 2604–2617.Google Scholar
  19. 19.
    Yousefi, R., Aghevlian, S., Mokhtari, F., Samouei, H., Rashidi, M., Nabavizadeh, S. M., Tavaf, Z., Pouryasin, Z., Niazi, A., & Faghihi, R. (2012). The anticancer activity and HSA binding Properties of the structurally related platinum (II) complexes. Applied Biochemistry and Biotechnology, 167(4), 861–872.Google Scholar
  20. 20.
    Saddik, A. A., El-Dean, K., Adel, M., El-Sokary, G. H., Hassan, K. M., Abbady, M. S., Ismail, I. A., & Saber, S. H. (2017). Synthesis and cytotoxicity of some Thieno[2,3-d]pyrimidine derivatives. Journal of the Chinese Chemical Society, 64(1), 87–93.Google Scholar
  21. 21.
    Gorle, S., Maddila, S., Chokkakula, S., Lavanya, P., Singh, M., & Jonnalagadda, S. B. (2016). Synthesis, biological activity of pyrimidine linked with morpholinophenyl derivatives. Journal of Heterocyclic Chemistry, 53(6), 1852–1858.Google Scholar
  22. 22.
    Mohana, K. N., Kumar, B. N. P., & Mallesha, L. (2013). Synthesis and biological activity of some pyrimidine derivatives. Drug Invention Today, 5(3), 216–222.Google Scholar
  23. 23.
    Furniss, B. S. H., J, A., Smith, P. W. G., & Tatchell, A. R. V. (2004). Vogel’s textbook of practical organic chemistry (5th ed.). London: ELBS and Longman.Google Scholar
  24. 24.
    White, C., Yates, A., Maitlis, P., & Heinekey, D. (2007). (η5-Pentamethylcyclopentadienyl)Rhodium and Iridium Compounds Inorganic Syntheses, 29, 228–234.Google Scholar
  25. 25.
    Ball, R., Graham, W., Heinekey, D., Hoyano, J., McMaster, A., Mattson, B., & Michel, S. (1990). Synthesis and structure of dicarbonylbis(.eta.-pentamethylcyclopentadienyl)diiridium. Inorganic Chemistry, 29(10), 2023–2025.Google Scholar
  26. 26.
    Kang, J. W., Moseley, K., & Maitlis, P. M. (1969). Pentamethylcyclopentadienylrhodium and -iridium halides. I. Synthesis and properties. Journal of the American Chemical Society, 91(22), 5970–5977.Google Scholar
  27. 27.
    Fernandes, C., Horn Jr., A., Vieira-da-Motta, O., de Assis, V. M., Rocha, M. R., Mathias, L. d. S., Bull, É. S., Bortoluzzi, A. J., Guimarães, E. V., Almeida, J. C. A., & Russell, D. H. (2010). Synthesis, characterization and antibacterial activity of FeIII, CoII, CuII and ZnII complexes probed by transmission electron microscopy. Journal of Inorganic Biochemistry, 104(11), 1214–1223.Google Scholar
  28. 28.
    Patel, M., Chhasatia, M., & Bhatt, B. (2011). In vitro bacteriostatic and DNA interaction studies of drug-based mixed-ligand complexes of cobalt(II). Medicinal Chemistry Research, 20(2), 220–230.Google Scholar
  29. 29.
    Reichmann, M. E., Rice, S. A., Thomas, C. A., & Doty, P. (1954). A further examination of the molecular weight and size of desoxypentose nucleic acid. Journal of the American Chemical Society, 76(11), 3047–3053.Google Scholar
  30. 30.
    Patel, M. N., Bhatt, B. S., & Dosi, P. A. (2012). Thermal, spectral, and thermodynamic studies for evaluation of calf thymus DNA interaction activity of some copper(II) complexes. Journal of Thermal Analysis and Calorimetry, 107(1), 55–64.Google Scholar
  31. 31.
    Shahabadi, N., Kashanian, S., Shalmashi, K., & Roshanfekr, H. (2009). DNA Interaction with PtCl2(LL) (LL = Chelating Diamine Ligand: N,N-Dimethyltrimethylendiamine) Complex. Applied Biochemistry and Biotechnology, 158(1), 1–10.Google Scholar
  32. 32.
    Bi, S., Zhao, T., Wang, Y., Zhou, H., Pang, B., & Gu, T. (2015). Spectrochimica Acta A, 150, 921–927.Google Scholar
  33. 33.
    Patel, M. N., Dosi, P. A., & Bhatt, B. S. (2012). Synthesis, characterization and biological activities of ciprofloxacin drug based metal complexes. Acta Chimica Slovenica, 59, 622-631Google Scholar
  34. 34.
    Patel, M. N., Bhatt, B. S., & Dosi, P. A. (2012). Topoisomerase inhibition, nucleolytic and electrolytic contribution on DNA binding activity exerted by biological active analogue of coordination compounds. Applied Biochemistry and Biotechnology, 166(8), 1949–1968.Google Scholar
  35. 35.
    Arthi, P., Shobana, S., Srinivasan, P., Mitu, L., & Kalilur Rahiman, A. (2015). Synthesis, characterization, biological evaluation and docking studies of macrocyclic binuclear manganese(II) complexes containing 3,5-dinitrobenzoyl pendant arms. Spectrochimica Acta A, 143, 49–58.Google Scholar
  36. 36.
    Mehta, J. V., Gajera, S. B., & Patel, M. N. (2016). Design, synthesis and biological evaluation of pyrazoline nucleus based homoleptic Ru(iii) compounds. Medicinal Chemistry Communications, 7(7), 1367–1380.Google Scholar
  37. 37.
    Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta Medica, 45(05), 31–34.Google Scholar
  38. 38.
    Rani, S., Kumar, S., & Chandra, S. (2011). Synthesis, structural, spectral, thermal and antimicrobial studies of palladium(II), platinum(II), ruthenium(III) and iridium(III) complexes derived from N,N,N,N-tetradentate macrocyclic ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78(5), 1507–1514.Google Scholar
  39. 39.
    Bellis, E., Hajba, L., Kovacs, B., Sandor, K., Kollar, L., & Kokotos, G. (2006). Three generations of α,γ-diaminobutyric acid modified poly(propyleneimine) dendrimers and their cisplatin-type platinum complexes. Journal of Biochemical and Biophysical Methods, 69(1-2), 151–161.Google Scholar
  40. 40.
    Dendrinou-Samara, C., Psomas, G., Raptopoulou, C. P., & Kessissoglou, D. P. (2001). Copper(II) complexes with phenoxyalkanoic acids and nitrogen donor heterocyclic ligands: structure and bioactivity. Journal of Inorganic Biochemistry, 83(1), 7–16.Google Scholar
  41. 41.
    Swavey, S., DeBeer, M., & Li, K. (2015). Photoinduced interactions of supramolecular Ruthenium(II) complexes with plasmid DNA: synthesis and spectroscopic, electrochemical, and DNA photocleavage studies. Inorganic Chemistry, 54(7), 3139–3147.Google Scholar
  42. 42.
    Asatkar, A. K., Tripathi, M., Panda, S., Pande, R., & Zade, S. S. (2017). Cu(I) complexes of bis(methyl)(thia/selena) salen ligands: synthesis, characterization, redox behavior and DNA binding studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 171, 18–24.Google Scholar
  43. 43.
    Singh, R., Jadeja, R. N., Thounaojam, M. C., Patel, T., Devkar, R. V., & Chakraborty, D. (2012). Synthesis, DNA binding and antiproliferative activity of ternary copper complexes of moxifloxacin and gatifloxacin against lung cancer cells. Inorganic Chemistry Communications, 23, 78–84.Google Scholar
  44. 44.
    Shahabadi, N., Hadidi, S., & Taherpour, A. A. (2014). Synthesis, characterization, and DNA binding studies of a new Pt(II) complex containing the drug Levetiracetam: combining experimental and computational methods. Applied Biochemistry and Biotechnology, 172(5), 2436–2454.Google Scholar
  45. 45.
    Dehkhodaei, M., Sahihi, M., Rudbari, H. A., Gharaghani, S., Azadbakht, R., Taheri, S., & Kajani, A. A. (2017). Studies of DNA- and HSA-binding properties of new nano-scale green synthesized Ni (II) complex as anticancer agent using spectroscopic methods, viscosity measurement, molecular docking, MD simulation and QM/MM. Journal of Molecular Liquids, 248, 24–35.Google Scholar
  46. 46.
    Lo, K. K. W., Chung, C. K., & Zhu, N. (2006). Nucleic acid intercalators and avidin probes derived from luminescent cyclometalated iridium(III)-dipyridoquinoxaline and -dipyridophenazine complexes. Chemistry-A European Journal, 12(5), 1500–1512.Google Scholar
  47. 47.
    Lo, K. K.-W., & Tsang, K. H.-K. (2004). Bifunctional luminescent Rhenium(I) complexes containing an extended planar diimine ligand and a biotin moiety. Organometallics, 23(12), 3062–3070.Google Scholar
  48. 48.
    Shoair, A., El-Shobaky, A., & Azab, E. (2015). Synthesis, characterization, DNA binding and catalytic applications of Ru(III) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 151, 322–334.Google Scholar
  49. 49.
    Rabindra, G., & Mahyoub, M. (2010). London AiT & First5 Committee: the voice of London General Practice Trainees within the Royal College of General Practitioners (RCGP). London Journal of Primary Care, 3(1), 58–58.Google Scholar
  50. 50.
    Dhanaraj, C. J., & Johnson, J. (2016). Transition metal complexes of a novel quinoxaline-based tridentate ONO donor ligand: synthesis, spectral characterization, thermal,in vitropharmacological and molecular modeling studies. Applied Organometallic Chemistry, 30(10), 860–871.Google Scholar
  51. 51.
    Gras, M., Therrien, B., Süss-Fink, G., Casini, A., Edafe, F., & Dyson, P. J. (2010). Anticancer activity of new organo-ruthenium, rhodium and iridium complexes containing the 2-(pyridine-2-yl)thiazole N,N-chelating ligand. Journal of Organometallic Chemistry, 695(8), 1119–1125.Google Scholar
  52. 52.
    Liu, Y.-J., Guan, X.-Y., Wei, X.-Y., He, L.-X., Mei, W.-J., & Yao, J.-H. (2007). Ruthenium(II) complexes containing 2,9-dimethyl-1,10-phenanthroline and 4,4′-dimethyl-2,2′-bipyridine as ancillary ligands: synthesis, characterization and DNA-binding. Transition Metal Chemistry, 33, 289–294.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistrySardar Patel UniversityVallabh VidyanagarIndia

Personalised recommendations