Advertisement

Identification of a Novel Feruloyl Esterase by Functional Screening of a Soil Metagenomic Library

  • Xuanxuan Li
  • Jia Guo
  • Yimin Hu
  • Yumeng Yang
  • Junwei Jiang
  • Fang Nan
  • Shenglu Wu
  • Zhihong Xin
Article

Abstract

A cosmid metagenomic library containing 1.3 × 105 clones was created from a soil sample. A novel gene (fae-xuan) encoding a feruloyl esterase was identified through functional screening. Primary sequence analysis showed that the gene consisted of 759 base pairs and encoded a protein of 252 amino acids. The gene was expressed in Escherichia coli BL21 (DE3) and the corresponding purified recombinant enzyme exhibited a molecular weight of 29 kDa. The FAE-Xuan showed high activity (40.0 U/mg) toward methyl ferulate with an optimal temperature and pH of 30 °C and 5.0, respectively. Besides methyl ferulate, FAE-Xuan can also hydrolyze methyl sinapate and methyl p-coumarate. The substrate utilization preferences and phylogenetic analysis indicated that FAE-Xuan belongs to type A FAE. FAE-Xuan was quite stable over a broad pH range from 3.0 to 10.0. The activity reduced remarkably in presence of Cu2+. FAE-Xuan can enhance the quantity of ferulic acid from de-starched wheat bran in presence of xylanase. The work presented here highlighted the effectiveness of metagenomic strategy in identifying novel FAEs with diverse properties for potential use in industrial production.

Keywords

Feruloyl esterase Metagenomic library Protein expression Functional screening pH stability 

Notes

Funding Information

This work was supported by the Fund for Qing Lan Project of Jiangsu Province, by the Fundamental Research Funds for the Central Universities (KYYJ201708), and by special funds of agro-product quality safety risk assessment of the Ministry of Agriculture of the People’s Republic of China (GJFP201701505).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects.

References

  1. 1.
    Faulds, C. B. (2010). What can feruloyl esterases do for us? Phytochemistry Reviews, 9(1), 121–132.CrossRefGoogle Scholar
  2. 2.
    Wong, D. W. (2006). Feruloyl esterase: a key enzyme in biomass degradation. Applied Biochemistry & Biotechnology Part A Enzyme Engineering & Biotechnology, 133(2), 87–112.CrossRefGoogle Scholar
  3. 3.
    Ou, S., & Kwok, K. C. (2004). Ferulic acid: pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture, 84(11), 1261–1269.CrossRefGoogle Scholar
  4. 4.
    Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports, 4, 86–93.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Record, E., Asther, M., Sigoillot, C., Pagès, S., Punt, P. J., Delattre, M., Haon, M., Ca, V. D. H., Sigoillot, J. C., & Lesagemeessen, L. (2003). Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Applied Microbiology and Biotechnology, 62(4), 349–355.CrossRefPubMedGoogle Scholar
  6. 6.
    Lynchj, P., Prema, D., Van Hamme, D., Church, J. S., & Beauchemin, K. A. (2014). Fiber degradability, chemical composition and conservation characteristics of alfalfa haylage ensiled with exogenous fbrolytic enzymes and a ferulic acid esterase-producing inoculant. Revue Canadienne De Science Animale, 94, 697–704.Google Scholar
  7. 7.
    Hassan, S., & Hugouvieux-Cotte-Pattat, N. (2011). Identification of two feruloyl esterases in Dickeya dadantii 3937 and induction of the major feruloyl esterase and of pectate lyases by ferulic acid. Journal of Bacteriology, 193(4), 963–970.CrossRefPubMedGoogle Scholar
  8. 8.
    Koseki, T., Takahashi, K., Fushinobu, S., Iefuji, H., Iwano, K., Hashizume, K., & Matsuzawa, H. (2005). Mutational analysis of a feruloyl esterase from Aspergillus awamori involved in substrate discrimination and pH dependence. Biochimica Et Biophysica Acta General Subjects, 1722(2), 200–208.CrossRefGoogle Scholar
  9. 9.
    Rashamuse, K., Burton, S., & Cowan, D. (2007). A novel recombinant ethyl ferulate esterase from Burkholderia multivorans. Journal of Applied Microbiology, 103(5), 1610–1620.CrossRefPubMedGoogle Scholar
  10. 10.
    Rumbold, K., Biely, P., Mastihubová, M., Gudelj, M., Gübitz, G., Robra, K. H., & Prior, B. A. (2003). Purification and properties of a feruloyl esterase involved in lignocellulose degradation by Aureobasidium pullulans. Applied and Environmental Microbiology, 69(9), 5622–5626.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zeng, W., & Chen, H. Z. (2009). Air pressure pulsation solid state fermentation of feruloyl esterase by Aspergillus niger. Bioresource Technology, 100(3), 1371–1375.CrossRefPubMedGoogle Scholar
  12. 12.
    Blum, D. L., Kataeva, I. A., Li, X. L., & Ljungdahl, L. G. (2000). Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. Journal of Bacteriology, 182(5), 1346–1351.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dalrymple, B. P., & Swadling, Y. (1997). Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene (cinR). Microbiology, 143(4), 1203–1210.CrossRefPubMedGoogle Scholar
  14. 14.
    Li, J., Cai, S., Luo, Y., & Dong, X. (2011). Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides. Applied and Environmental Microbiology, 77(17), 6141–6147.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mark, B., Petra, H., Davidp, W., Jesals, P., Flash, B., Timothys, H., & Uwet, B. (2008). Characterization of lipases and esterases from metagenomes for lipid modification. Journal of the American Oil Chemists Society, 85, 47–53.CrossRefGoogle Scholar
  16. 16.
    Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews: MMBR, 68(4), 669–685.CrossRefPubMedGoogle Scholar
  17. 17.
    Rashamuse, K., Sanyika, W., Ronneburg, T., & Brady, D. (2012). A feruloyl esterase derived from a leachate metagenome library. BMB Reports, 45(1), 14–19.CrossRefPubMedGoogle Scholar
  18. 18.
    Cheng, F., Sheng, J., Dong, R., Men, Y., Gan, L., & Shen, L. (2012). Novel xylanase from a Holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw. Journal of Agricultural and Food Chemistry, 60(51), 12516–12524.CrossRefPubMedGoogle Scholar
  19. 19.
    Elend, C., Schmeisser, C., Leggewie, C., Babiak, P., Carballeira, J. D., Steele, H. L., Reymond, J. L., Jaeger, K. E., & Streit, W. R. (2006). Isolation and biochemical characterization of two novel metagenome-derived esterases. Applied Biochemistry and Biotechnology, 169, 3637–3645.Google Scholar
  20. 20.
    Li, H., Fei, Z., Gong, J., Yang, T., Xu, Z., & Shi, J. (2015). Screening and characterization of a highly active chitosanase based on metagenomic technology. Journal of Molecular Catalysis B: Enzymatic, 111, 29–35.CrossRefGoogle Scholar
  21. 21.
    Lee, D. G., Jeon, J. H., Jang, M. K., Kim, N. Y., Lee, J. H., Lee, J. H., Kim, S. J., Kim, G. D., & Lee, S. H. (2007). Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library. Biotechnology Letters, 29(3), 465–472.CrossRefPubMedGoogle Scholar
  22. 22.
    Torsvik, V., Daae, F. L., Sandaa, R. A., & Ovreås, L. (1998). Novel techniques for analysing microbial diversity in natural and perturbed environments. Journal of Biotechnology, 64(1), 53–62.CrossRefPubMedGoogle Scholar
  23. 23.
    Torsvik, V., Goksøyr, J., & Daae, F. L. (1990). High diversity in DNA of soil bacteria. Applied and Environmental Microbiology, 56(3), 782–787.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Brady, S. F. (2007). Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nature Protocols, 2(5), 1297–1305.CrossRefPubMedGoogle Scholar
  25. 25.
    Donaghy, J., Kelly, P. F., & Mckay, A. M. (1998). Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Applied Microbiology and Biotechnology, 50(2), 257–260.CrossRefPubMedGoogle Scholar
  26. 26.
    Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schäffer, A. A., & Yu, Y. K. (2005). Protein database searches using compositionally adjusted substitution matrices. FEBS Journal, 272(20), 5101–5109.CrossRefPubMedGoogle Scholar
  27. 27.
    Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., Mcwilliam, H., Remmert, M., & Söding, J. (2014). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539–544.CrossRefGoogle Scholar
  28. 28.
    Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.PubMedGoogle Scholar
  29. 29.
    Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., & Bordoli, L. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, 252–258.CrossRefGoogle Scholar
  30. 30.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.CrossRefGoogle Scholar
  31. 31.
    Dilokpimol, A., Mäkelä, M. R., Aguilarpontes, M. V., Benoitgelber, I., Hildén, K. S., & Vries, R. P. (2016). Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnology for Biofuels, 9(1), 231–248.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dilokpimol, A., Mäkelä, M. R., Mansouri, S., Belova, O., Waterstraat, M., Bunzel, M., Vries, R. P. D., & Hildén, K. S. (2017). Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. New Biotechnology, 37(Pt B), 200–209.CrossRefPubMedGoogle Scholar
  33. 33.
    Shin, H. D., & Chen, R. R. (2007). A type B feruloyl esterase from Aspergillus nidulans with broad pH applicability. Applied Microbiology and Biotechnology, 73(6), 1323–1330.CrossRefPubMedGoogle Scholar
  34. 34.
    Zeng, Y., Yin, X., Wu, M. C., Yu, T., Feng, F., Zhu, T. D., & Pang, Q. F. (2014). Expression of a novel feruloyl esterase from Aspergillus oryzae in Pichia pastoris with esterification activity. Journal of Molecular Catalysis B: Enzymatic, 110, 140–146.CrossRefGoogle Scholar
  35. 35.
    Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5, 245–249.CrossRefGoogle Scholar
  36. 36.
    Iqbal, H. A., Feng, Z., & Brady, S. F. (2012). Biocatalysts and small molecule products from metagenomic studies. Current Opinion in Chemical Biology, 16(1-2), 109–116.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hu, X. P., Heath, C., Taylor, M. P., Tuffin, M., & Cowan, D. (2011). A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil. Extremophiles Life Under Extreme Conditions, 16, 79–86.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang, K., Li, G., Yu, S. Q., Zhang, C. T., & Liu, Y. H. (2010). A novel metagenome-derived β-galactosidase: gene cloning, overexpression, purification and characterization. Applied Microbiology and Biotechnology, 88(1), 155–165.CrossRefPubMedGoogle Scholar
  39. 39.
    Sang, S. L., Li, G., Hu, X. P., & Liu, Y. H. (2011). Molecular cloning, overexpression and characterization of a novel feruloyl esterase from a soil metagenomic library. Journal of Molecular Microbiology and Biotechnology, 20(4), 196–203.CrossRefPubMedGoogle Scholar
  40. 40.
    Arpigny, J. L., & Jaeger, K. (1999). Bacterial lipolytic enzymes: classification and properties. The Biochemical Journal, 343(1), 177–183.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sayer, C., Isupov, M. N., Bonchosmolovskaya, E., & Littlechild, J. A. (2015). Structural studies of a thermophilic esterase from a new Planctomycetes species, Thermogutta terrifontis. FEBS Journal, 282(15), 2846–2857.CrossRefPubMedGoogle Scholar
  42. 42.
    Pereira, M. R., Maester, T. C., Mercaldi, G. F., Lemos, E. G. D. M., Hyvönen, M., & Balan, A. (2017). From a metagenomic source to a high-resolution structure of a novel alkaline esterase. Applied Microbiology and Biotechnology, 101, 1–15.CrossRefGoogle Scholar
  43. 43.
    Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2004). Functional classification of the microbial feruloyl esterases. Applied Microbiology and Biotechnology, 63(6), 647–652.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang, S. B., Wang, L., Liu, Y., Zhai, H. C., Cai, J. P., & Hu, Y. S. (2015). Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation. Protein Expression and Purification, 115, 153–157.CrossRefPubMedGoogle Scholar
  45. 45.
    Nieter, A., Haaseaschoff, P., Linke, D., Nimtz, M., & Berger, R. G. (2014). A halotolerant type A feruloyl esterase from Pleurotus eryngii. Fungal Biology, 118(3), 348–357.CrossRefPubMedGoogle Scholar
  46. 46.
    Damásio, A. R. L., Braga, C. M. P., Brenelli, L. B., Citadini, A. P., Mandelli, F., Cota, J., Almeida, R. F. D., Salvador, V. H., Paixao, D. A. A., & Segato, F. (2013). Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Applied Microbiology and Biotechnology, 97(15), 6759–6767.CrossRefPubMedGoogle Scholar
  47. 47.
    Faulds, C. B., & Williamson, G. (1991). The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. Journal of General Microbiology, 137(10), 2339–2345.CrossRefPubMedGoogle Scholar
  48. 48.
    Vries, R. P. D., Michelsen, B., Poulsen, C. H., Kroon, P. A., Heuvel, R. H. V. D., Faulds, C. B., Williamson, G., Hombergh, J. P. V. D., & Visser, J. (1997). The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Applied and Environmental Microbiology, 63(12), 4638–4644.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Garcia-Conesa, M. T., Crepin, V. F., Goldson, A. J., Williamson, G., Cummings, N. J., Connerton, I. F., Faulds, C. B., & Kroon, P. A. (2004). The feruloyl esterase system of Talaromyces stipitatus: production of three discrete feruloyl esterases, including a novel enzyme, TsFaeC, with a broad substrate specificity. Journal of Biotechnology, 108(3), 227–241.CrossRefPubMedGoogle Scholar
  50. 50.
    Debeire, P., Khoune, P., Jeltsch, J. M., & Phalip, V. (2012). Product patterns of a feruloyl esterase from Aspergillus nidulans on large feruloyl-arabino-xylo-oligosaccharides from wheat bran. Bioresource Technology, 119, 425–428.CrossRefPubMedGoogle Scholar
  51. 51.
    Lai, K. K. (2009). Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Applied and Environmental Microbiology, 75(15), 5018–5024.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Donaghy, J. A., Bronnenmeier, K., Sotokelly, P. F., & Mckay, A. M. (2000). Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. Journal of Applied Microbiology, 88(3), 458–466.CrossRefPubMedGoogle Scholar
  53. 53.
    Topakas, E., Moukouli, M., Dimarogona, M., & Christakopoulos, P. (2012). Expression, characterization and structural modelling of a feruloyl esterase from the thermophilic fungus Myceliophthora thermophila. Applied Microbiology and Biotechnology, 94(2), 399–411.CrossRefPubMedGoogle Scholar
  54. 54.
    Abokitse, K., Wu, M., Bergeron, H., Grosse, S., & Lau, P. C. (2010). Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Applied Microbiology and Biotechnology, 87(1), 195–203.CrossRefPubMedGoogle Scholar
  55. 55.
    Rashamuse, K., Ronneburg, T., Sanyika, W., Mathiba, K., Mmutlane, E., & Brady, D. (2014). Metagenomic mining of feruloyl esterases from termite enteric flora. Applied Microbiology and Biotechnology, 98(2), 727–737.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xuanxuan Li
    • 1
  • Jia Guo
    • 1
  • Yimin Hu
    • 1
  • Yumeng Yang
    • 1
  • Junwei Jiang
    • 1
  • Fang Nan
    • 1
  • Shenglu Wu
    • 1
  • Zhihong Xin
    • 1
  1. 1.Key Laboratory of Food Processing and Quality Control, College of Food Science and TechnologyNanjing Agricultural UniversityNanjingPeople’s Republic of China

Personalised recommendations