Skip to main content
Log in

Identification of a Novel Feruloyl Esterase by Functional Screening of a Soil Metagenomic Library

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Author Correction to this article was published on 26 February 2019

This article has been updated

Abstract

A cosmid metagenomic library containing 1.3 × 105 clones was created from a soil sample. A novel gene (fae-xuan) encoding a feruloyl esterase was identified through functional screening. Primary sequence analysis showed that the gene consisted of 759 base pairs and encoded a protein of 252 amino acids. The gene was expressed in Escherichia coli BL21 (DE3) and the corresponding purified recombinant enzyme exhibited a molecular weight of 29 kDa. The FAE-Xuan showed high activity (40.0 U/mg) toward methyl ferulate with an optimal temperature and pH of 30 °C and 5.0, respectively. Besides methyl ferulate, FAE-Xuan can also hydrolyze methyl sinapate and methyl p-coumarate. The substrate utilization preferences and phylogenetic analysis indicated that FAE-Xuan belongs to type A FAE. FAE-Xuan was quite stable over a broad pH range from 3.0 to 10.0. The activity reduced remarkably in presence of Cu2+. FAE-Xuan can enhance the quantity of ferulic acid from de-starched wheat bran in presence of xylanase. The work presented here highlighted the effectiveness of metagenomic strategy in identifying novel FAEs with diverse properties for potential use in industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 26 February 2019

    The original version of this article unfortunately contained a mistake in the image and caption of Fig. 6. The corrected version of the image and caption is shown here.

References

  1. Faulds, C. B. (2010). What can feruloyl esterases do for us? Phytochemistry Reviews, 9(1), 121–132.

    Article  CAS  Google Scholar 

  2. Wong, D. W. (2006). Feruloyl esterase: a key enzyme in biomass degradation. Applied Biochemistry & Biotechnology Part A Enzyme Engineering & Biotechnology, 133(2), 87–112.

    Article  CAS  Google Scholar 

  3. Ou, S., & Kwok, K. C. (2004). Ferulic acid: pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture, 84(11), 1261–1269.

    Article  CAS  Google Scholar 

  4. Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports, 4, 86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Record, E., Asther, M., Sigoillot, C., Pagès, S., Punt, P. J., Delattre, M., Haon, M., Ca, V. D. H., Sigoillot, J. C., & Lesagemeessen, L. (2003). Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Applied Microbiology and Biotechnology, 62(4), 349–355.

    Article  CAS  PubMed  Google Scholar 

  6. Lynchj, P., Prema, D., Van Hamme, D., Church, J. S., & Beauchemin, K. A. (2014). Fiber degradability, chemical composition and conservation characteristics of alfalfa haylage ensiled with exogenous fbrolytic enzymes and a ferulic acid esterase-producing inoculant. Revue Canadienne De Science Animale, 94, 697–704.

    Google Scholar 

  7. Hassan, S., & Hugouvieux-Cotte-Pattat, N. (2011). Identification of two feruloyl esterases in Dickeya dadantii 3937 and induction of the major feruloyl esterase and of pectate lyases by ferulic acid. Journal of Bacteriology, 193(4), 963–970.

    Article  CAS  PubMed  Google Scholar 

  8. Koseki, T., Takahashi, K., Fushinobu, S., Iefuji, H., Iwano, K., Hashizume, K., & Matsuzawa, H. (2005). Mutational analysis of a feruloyl esterase from Aspergillus awamori involved in substrate discrimination and pH dependence. Biochimica Et Biophysica Acta General Subjects, 1722(2), 200–208.

    Article  CAS  Google Scholar 

  9. Rashamuse, K., Burton, S., & Cowan, D. (2007). A novel recombinant ethyl ferulate esterase from Burkholderia multivorans. Journal of Applied Microbiology, 103(5), 1610–1620.

    Article  CAS  PubMed  Google Scholar 

  10. Rumbold, K., Biely, P., Mastihubová, M., Gudelj, M., Gübitz, G., Robra, K. H., & Prior, B. A. (2003). Purification and properties of a feruloyl esterase involved in lignocellulose degradation by Aureobasidium pullulans. Applied and Environmental Microbiology, 69(9), 5622–5626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng, W., & Chen, H. Z. (2009). Air pressure pulsation solid state fermentation of feruloyl esterase by Aspergillus niger. Bioresource Technology, 100(3), 1371–1375.

    Article  CAS  PubMed  Google Scholar 

  12. Blum, D. L., Kataeva, I. A., Li, X. L., & Ljungdahl, L. G. (2000). Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. Journal of Bacteriology, 182(5), 1346–1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dalrymple, B. P., & Swadling, Y. (1997). Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene (cinR). Microbiology, 143(4), 1203–1210.

    Article  CAS  PubMed  Google Scholar 

  14. Li, J., Cai, S., Luo, Y., & Dong, X. (2011). Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides. Applied and Environmental Microbiology, 77(17), 6141–6147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mark, B., Petra, H., Davidp, W., Jesals, P., Flash, B., Timothys, H., & Uwet, B. (2008). Characterization of lipases and esterases from metagenomes for lipid modification. Journal of the American Oil Chemists Society, 85, 47–53.

    Article  CAS  Google Scholar 

  16. Handelsman, J. (2004). Metagenomics: application of genomics to uncultured microorganisms. Microbiology and Molecular Biology Reviews: MMBR, 68(4), 669–685.

    Article  CAS  PubMed  Google Scholar 

  17. Rashamuse, K., Sanyika, W., Ronneburg, T., & Brady, D. (2012). A feruloyl esterase derived from a leachate metagenome library. BMB Reports, 45(1), 14–19.

    Article  CAS  PubMed  Google Scholar 

  18. Cheng, F., Sheng, J., Dong, R., Men, Y., Gan, L., & Shen, L. (2012). Novel xylanase from a Holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic acid production from wheat straw. Journal of Agricultural and Food Chemistry, 60(51), 12516–12524.

    Article  CAS  PubMed  Google Scholar 

  19. Elend, C., Schmeisser, C., Leggewie, C., Babiak, P., Carballeira, J. D., Steele, H. L., Reymond, J. L., Jaeger, K. E., & Streit, W. R. (2006). Isolation and biochemical characterization of two novel metagenome-derived esterases. Applied Biochemistry and Biotechnology, 169, 3637–3645.

    Google Scholar 

  20. Li, H., Fei, Z., Gong, J., Yang, T., Xu, Z., & Shi, J. (2015). Screening and characterization of a highly active chitosanase based on metagenomic technology. Journal of Molecular Catalysis B: Enzymatic, 111, 29–35.

    Article  CAS  Google Scholar 

  21. Lee, D. G., Jeon, J. H., Jang, M. K., Kim, N. Y., Lee, J. H., Lee, J. H., Kim, S. J., Kim, G. D., & Lee, S. H. (2007). Screening and characterization of a novel fibrinolytic metalloprotease from a metagenomic library. Biotechnology Letters, 29(3), 465–472.

    Article  CAS  PubMed  Google Scholar 

  22. Torsvik, V., Daae, F. L., Sandaa, R. A., & Ovreås, L. (1998). Novel techniques for analysing microbial diversity in natural and perturbed environments. Journal of Biotechnology, 64(1), 53–62.

    Article  CAS  PubMed  Google Scholar 

  23. Torsvik, V., Goksøyr, J., & Daae, F. L. (1990). High diversity in DNA of soil bacteria. Applied and Environmental Microbiology, 56(3), 782–787.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Brady, S. F. (2007). Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nature Protocols, 2(5), 1297–1305.

    Article  CAS  PubMed  Google Scholar 

  25. Donaghy, J., Kelly, P. F., & Mckay, A. M. (1998). Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Applied Microbiology and Biotechnology, 50(2), 257–260.

    Article  CAS  PubMed  Google Scholar 

  26. Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schäffer, A. A., & Yu, Y. K. (2005). Protein database searches using compositionally adjusted substitution matrices. FEBS Journal, 272(20), 5101–5109.

    Article  CAS  PubMed  Google Scholar 

  27. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., Mcwilliam, H., Remmert, M., & Söding, J. (2014). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539–544.

    Article  Google Scholar 

  28. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

    CAS  PubMed  Google Scholar 

  29. Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., & Bordoli, L. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42, 252–258.

    Article  CAS  Google Scholar 

  30. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  PubMed  Google Scholar 

  31. Dilokpimol, A., Mäkelä, M. R., Aguilarpontes, M. V., Benoitgelber, I., Hildén, K. S., & Vries, R. P. (2016). Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnology for Biofuels, 9(1), 231–248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dilokpimol, A., Mäkelä, M. R., Mansouri, S., Belova, O., Waterstraat, M., Bunzel, M., Vries, R. P. D., & Hildén, K. S. (2017). Expanding the feruloyl esterase gene family of Aspergillus niger by characterization of a feruloyl esterase, FaeC. New Biotechnology, 37(Pt B), 200–209.

    Article  CAS  PubMed  Google Scholar 

  33. Shin, H. D., & Chen, R. R. (2007). A type B feruloyl esterase from Aspergillus nidulans with broad pH applicability. Applied Microbiology and Biotechnology, 73(6), 1323–1330.

    Article  CAS  PubMed  Google Scholar 

  34. Zeng, Y., Yin, X., Wu, M. C., Yu, T., Feng, F., Zhu, T. D., & Pang, Q. F. (2014). Expression of a novel feruloyl esterase from Aspergillus oryzae in Pichia pastoris with esterification activity. Journal of Molecular Catalysis B: Enzymatic, 110, 140–146.

    Article  CAS  Google Scholar 

  35. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5, 245–249.

    Article  Google Scholar 

  36. Iqbal, H. A., Feng, Z., & Brady, S. F. (2012). Biocatalysts and small molecule products from metagenomic studies. Current Opinion in Chemical Biology, 16(1-2), 109–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hu, X. P., Heath, C., Taylor, M. P., Tuffin, M., & Cowan, D. (2011). A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil. Extremophiles Life Under Extreme Conditions, 16, 79–86.

    Article  PubMed  CAS  Google Scholar 

  38. Wang, K., Li, G., Yu, S. Q., Zhang, C. T., & Liu, Y. H. (2010). A novel metagenome-derived β-galactosidase: gene cloning, overexpression, purification and characterization. Applied Microbiology and Biotechnology, 88(1), 155–165.

    Article  CAS  PubMed  Google Scholar 

  39. Sang, S. L., Li, G., Hu, X. P., & Liu, Y. H. (2011). Molecular cloning, overexpression and characterization of a novel feruloyl esterase from a soil metagenomic library. Journal of Molecular Microbiology and Biotechnology, 20(4), 196–203.

    Article  CAS  PubMed  Google Scholar 

  40. Arpigny, J. L., & Jaeger, K. (1999). Bacterial lipolytic enzymes: classification and properties. The Biochemical Journal, 343(1), 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sayer, C., Isupov, M. N., Bonchosmolovskaya, E., & Littlechild, J. A. (2015). Structural studies of a thermophilic esterase from a new Planctomycetes species, Thermogutta terrifontis. FEBS Journal, 282(15), 2846–2857.

    Article  CAS  PubMed  Google Scholar 

  42. Pereira, M. R., Maester, T. C., Mercaldi, G. F., Lemos, E. G. D. M., Hyvönen, M., & Balan, A. (2017). From a metagenomic source to a high-resolution structure of a novel alkaline esterase. Applied Microbiology and Biotechnology, 101, 1–15.

    Article  CAS  Google Scholar 

  43. Crepin, V. F., Faulds, C. B., & Connerton, I. F. (2004). Functional classification of the microbial feruloyl esterases. Applied Microbiology and Biotechnology, 63(6), 647–652.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, S. B., Wang, L., Liu, Y., Zhai, H. C., Cai, J. P., & Hu, Y. S. (2015). Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation. Protein Expression and Purification, 115, 153–157.

    Article  CAS  PubMed  Google Scholar 

  45. Nieter, A., Haaseaschoff, P., Linke, D., Nimtz, M., & Berger, R. G. (2014). A halotolerant type A feruloyl esterase from Pleurotus eryngii. Fungal Biology, 118(3), 348–357.

    Article  CAS  PubMed  Google Scholar 

  46. Damásio, A. R. L., Braga, C. M. P., Brenelli, L. B., Citadini, A. P., Mandelli, F., Cota, J., Almeida, R. F. D., Salvador, V. H., Paixao, D. A. A., & Segato, F. (2013). Biomass-to-bio-products application of feruloyl esterase from Aspergillus clavatus. Applied Microbiology and Biotechnology, 97(15), 6759–6767.

    Article  PubMed  CAS  Google Scholar 

  47. Faulds, C. B., & Williamson, G. (1991). The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. Journal of General Microbiology, 137(10), 2339–2345.

    Article  CAS  PubMed  Google Scholar 

  48. Vries, R. P. D., Michelsen, B., Poulsen, C. H., Kroon, P. A., Heuvel, R. H. V. D., Faulds, C. B., Williamson, G., Hombergh, J. P. V. D., & Visser, J. (1997). The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Applied and Environmental Microbiology, 63(12), 4638–4644.

    PubMed  PubMed Central  Google Scholar 

  49. Garcia-Conesa, M. T., Crepin, V. F., Goldson, A. J., Williamson, G., Cummings, N. J., Connerton, I. F., Faulds, C. B., & Kroon, P. A. (2004). The feruloyl esterase system of Talaromyces stipitatus: production of three discrete feruloyl esterases, including a novel enzyme, TsFaeC, with a broad substrate specificity. Journal of Biotechnology, 108(3), 227–241.

    Article  CAS  PubMed  Google Scholar 

  50. Debeire, P., Khoune, P., Jeltsch, J. M., & Phalip, V. (2012). Product patterns of a feruloyl esterase from Aspergillus nidulans on large feruloyl-arabino-xylo-oligosaccharides from wheat bran. Bioresource Technology, 119, 425–428.

    Article  CAS  PubMed  Google Scholar 

  51. Lai, K. K. (2009). Biochemical properties of two cinnamoyl esterases purified from a Lactobacillus johnsonii strain isolated from stool samples of diabetes-resistant rats. Applied and Environmental Microbiology, 75(15), 5018–5024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Donaghy, J. A., Bronnenmeier, K., Sotokelly, P. F., & Mckay, A. M. (2000). Purification and characterization of an extracellular feruloyl esterase from the thermophilic anaerobe Clostridium stercorarium. Journal of Applied Microbiology, 88(3), 458–466.

    Article  CAS  PubMed  Google Scholar 

  53. Topakas, E., Moukouli, M., Dimarogona, M., & Christakopoulos, P. (2012). Expression, characterization and structural modelling of a feruloyl esterase from the thermophilic fungus Myceliophthora thermophila. Applied Microbiology and Biotechnology, 94(2), 399–411.

    Article  CAS  PubMed  Google Scholar 

  54. Abokitse, K., Wu, M., Bergeron, H., Grosse, S., & Lau, P. C. (2010). Thermostable feruloyl esterase for the bioproduction of ferulic acid from triticale bran. Applied Microbiology and Biotechnology, 87(1), 195–203.

    Article  CAS  PubMed  Google Scholar 

  55. Rashamuse, K., Ronneburg, T., Sanyika, W., Mathiba, K., Mmutlane, E., & Brady, D. (2014). Metagenomic mining of feruloyl esterases from termite enteric flora. Applied Microbiology and Biotechnology, 98(2), 727–737.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fund for Qing Lan Project of Jiangsu Province, by the Fundamental Research Funds for the Central Universities (KYYJ201708), and by special funds of agro-product quality safety risk assessment of the Ministry of Agriculture of the People’s Republic of China (GJFP201701505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihong Xin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Guo, J., Hu, Y. et al. Identification of a Novel Feruloyl Esterase by Functional Screening of a Soil Metagenomic Library. Appl Biochem Biotechnol 187, 424–437 (2019). https://doi.org/10.1007/s12010-018-2832-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-018-2832-1

Keywords

Navigation