Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 396–406 | Cite as

Efficient Preparation of Xylonic Acid from Xylonate Fermentation Broth by Bipolar Membrane Electrodialysis

  • Rou Cao
  • Yong XuEmail author


Preparation of xylonic acid from xylonate fermentation broth was studied in a four-chamber bipolar membrane electrodialysis (BMED) setup. The effects of metal-ion size, current density, and xylonate concentration on BMED were evaluated principally with respect to acid yield and partially with respect to efficiency and energy consumption. Sodium xylonate was more successful than potassium xylonate because of its smaller size and easier membrane penetrability for BMDE. Efficient electrodialysis was achieved using 50 mA/cm2 current density for 14 min; thus, we obtained 92% xylonic acid from 100 g/L sodium xylonate fermentation broth. In conclusion, BMED can be used for producing xylonic acid from fermentation broth. Moreover, this study highlights ways of improving the efficiency of BMED.


Xylonic acid Xylonate fermentation broth Bipolar membrane electrodialysis (BMED) Acid yield Current density 


Funding Information

The research was supported by the Key Research and Development Program of Jiangsu (BE2015758) and the National Natural Science Foundation of China (31370573).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Pandey, A. S., & Carlos, R. (1998). Bioconversion of biomass: a case study of ligno-cellulosics bioconversions in solid state fermentation. Brazilian Archives of Biology and Technology, 41, 379–390.CrossRefGoogle Scholar
  2. 2.
    Werpy, T. A., Holladay, J. E., and White, J. F. (2004). Top value added chemicals from biomass: I. Results of screening for potential candidates from sugars and synthesis gas. Texas, US: University of North Texas Libraries, Digital Library.Google Scholar
  3. 3.
    Chun, B. W., Dair, B., Macuch, P. J., Wiebe, D., Porteneuve, C., & Jeknavorian, A. (2006). The development of cement and concrete additive. Applied Biochemistry and Biotechnology, 131(1-3), 645–658.CrossRefGoogle Scholar
  4. 4.
    Toivari, M. H., Ruohonen, L., Richard, P., Penttilä, M., & Wiebe, M. G. (2010). Saccharomyces cerevisiae engineered to produce D-xylonate. Applied Microbiology and Biotechnology, 88(3), 751–760.CrossRefGoogle Scholar
  5. 5.
    Zhou, X., Lü, S., Xu, Y., Mo, Y., & Yu, S. (2015). Improving the performance of cell biocatalysis and the productivity of xylonic acid using a compressed oxygen supply. Biochemical Engineering Journal, 93, 196–199.CrossRefGoogle Scholar
  6. 6.
    Huang, C., Xu, T., Zhang, Y., Xue, Y., & Chen, G. (2007). Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. Journal of Membrane Science, 288(1-2), 1–12.CrossRefGoogle Scholar
  7. 7.
    Huang, C., & Xu, T. (2006). Electrodialysis with bipolar membranes for sustainable development. Environmental Science & Technology, 40(17), 5233–5243.CrossRefGoogle Scholar
  8. 8.
    Szczygiełda, M., Antczak, J., & Prochaska, K. (2017). Separation and concentration of succinic acid from post-fermentation broth by bipolar membrane electrodialysis (EDBM). Separation and Purification Technology, 181, 53–59.CrossRefGoogle Scholar
  9. 9.
    Raissouni, I., Marraha, M., & Azmani, A. (2007). Effect of some parameters on the improvement of the bipolar membrane electrodialysis process. Desalination, 208(1-3), 62–72.CrossRefGoogle Scholar
  10. 10.
    Ghyselbrecht, K., Huygebaert, M., Bruggen, B., Ballet, R., & Meesschaert, B. (2013). Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis. Desalination, 318, 9–18.CrossRefGoogle Scholar
  11. 11.
    Strathmann, H. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3), 268–288.CrossRefGoogle Scholar
  12. 12.
    Rubinstein, I., Staude, E., & Kedem, O. (1988). Role of the membrane surface in concentration polarization at ion-exchange membrane. Desalination, 69(2), 101–114.CrossRefGoogle Scholar
  13. 13.
    Buchert, J., Puls, J., & Poutanen, K. (1988). Comparison of Pseudomonas fragi and Gluconobacter oxydans for production of xylonic acid from hemicellulose hydrolyzates. Applied Microbiology and Biotechnology, 28(4-5), 367–372.CrossRefGoogle Scholar
  14. 14.
    Liu, X., Xu, W., Mao, L., Zhang, C., Yan, P., Xu, Z., & Zhang, Z. C. (2016). Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification. Science Reports-UK, 6(1), 20361.CrossRefGoogle Scholar
  15. 15.
    Lansman, J. B. (1990). Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. The Journal of General Physiology, 95(4), 679–696.CrossRefGoogle Scholar
  16. 16.
    Yu, D., Cao, W., Wu, H., & Zhao, J. (2007). Ionic radius scale of establishing synthesis factor of ionic mass and electricity. Acta Physico-Chimica Sinica, 23(5), 683–687.CrossRefGoogle Scholar
  17. 17.
    Liu, X., Li, Q., Jiang, C., Lin, X., & Xu, T. (2015). Bipolar membrane electrodialysis in aqua–ethanol medium: production of salicylic acid. Journal of Membrane Science, 482, 76–82.CrossRefGoogle Scholar
  18. 18.
    Prochaska, K., Staszak, K., Woźniak-Budych, M. J., Regel-Rosocka, M., Adamczak, M., Wiśniewski, M., & Staniewski, J. (2014). Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth. Bioresource Technology, 167, 219–225.CrossRefGoogle Scholar
  19. 19.
    Li, Y., Shi, S., Cao, H., Wu, X., & Zhao, Z. (2016). Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater. Water Research, 89, 201–209.CrossRefGoogle Scholar
  20. 20.
    Ghyselbrecht, K., Silva, A., Bruggen, B., Boussu, K., & Meesschaert, B. (2014). Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis. Journal of Environmental Management, 140, 69–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesNanjing Forestry UniversityNanjingPeople’s Republic of China
  2. 2.College of Chemical EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China
  3. 3.Jiangsu Province Key Laboratory of Green Biomass-based Fuels and ChemicalsNanjingPeople’s Republic of China

Personalised recommendations