Applied Biochemistry and Biotechnology

, Volume 187, Issue 2, pp 439–448 | Cite as

Efficient Production of 2,6-Difluorobenzamide by Recombinant Escherichia coli Expressing the Aurantimonas manganoxydans Nitrile Hydratase

  • Zhengfei Yang
  • Xiaolin Pei
  • Gang Xu
  • Jianping Wu
  • Lirong YangEmail author


2,6-Difluorobenzamide is an important intermediate with many applications in pesticide industries. Through screening a library of recombinant nitrile hydratases, the nitrile hydratase from Aurantimonas manganoxydans ATCC BAA-1229 was selected for production of 2,6-difluorobenzamide from 2,6-difluorobenzonitrile. Key parameters of the biocatalytic process, including temperature, pH, substrate loading, and substrate feeding mode, were optimized. Finally, 314 g/L of 2,6-difluorobenzamide was produced in a simple batch process within 11 h without formation of any by-product in an economical non-buffer system and similar result was obtained when scaled up to 30 L. This study constitutes the first report of 2,6-difluorobenzamide significant production using a recombinant Escherichia coli-based biocatalyst.


Nitrile hydratase 2,6-Difluorobenzamide Whole-cell biotransformation Non-buffer system Escherichia coli 


Funding Information

This work was supported by the National Natural Science Foundation of China (Nos. 21476199, 21676240).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chen, L., Ou, X. M., Mao, C. H., Shang, J., Huang, R. Q., Bi, F. C., & Wang, Q. M. (2007). Synthesis and bioassay evaluation of 1-(4-substitutedideneaminooxymethyl)-phenyl-3-(2,6-difluorobenzoyl)ureas. Bioorganic & Medicinal Chemistry, 15, 3678–3683.CrossRefGoogle Scholar
  2. 2.
    Huff, R. K. (1979). Oxadiazindione derivatives useful as insecticides. US Patent 4,150,158.Google Scholar
  3. 3.
    Parkins, A. W. (1996). Catalytic hydration of nitriles to amides. Platinum Metals Review, 40, 169–174.Google Scholar
  4. 4.
    Prasad, S., & Bhalla, T. C. (2010). Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnology Advances, 28, 725–741.CrossRefGoogle Scholar
  5. 5.
    Mauger, J., Nagasawa, T., & Yamada, H. (1989). Synthesis of various aromatic amide derivatives using nitrile hydratase of Rhodococcus rhodochrous J1. Tetrahedron, 45, 1347–1354.CrossRefGoogle Scholar
  6. 6.
    Tang, R., Shen, Y., Wang, M., Zhai, Y., & Gao, Q. (2017). Highly chemoselective and efficient production of 2,6-difluorobenzamide using Rhodococcus ruber CGMCC3090 resting cells. Journal of Bioscience and Bioengineering, 124, 641–646.CrossRefGoogle Scholar
  7. 7.
    Gilligan, T., Yamada, H., & Nagasawa, T. (1993). Production of S-(+)-2-phenylpropionic acid from (R,S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG328. Applied Microbiology and Biotechnology, 39, 720–725.CrossRefGoogle Scholar
  8. 8.
    Nagasawa, T., Takeuchi, K., Nardi-Dei, V., Mihara, Y., & Yamada, H. (1991). Optimum culture conditions for the production of cobalt-containing nitrile hydratase by Rhodococcus rhodochrous J1. Applied Microbiology and Biotechnology, 34, 783–788.CrossRefGoogle Scholar
  9. 9.
    Zhang, J., Wang, M., Sun, H., Li, X. D., & Zhong, L. P. (2009). Isolation and characterization of Rhodococcus ruber CGMCC3090 that hydrolyzes aliphatic, aromatic and heterocyclic nitriles. African Journal of Biotechnology, 820, 5467–5486.Google Scholar
  10. 10.
    Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172.Google Scholar
  11. 11.
    Reisinger, C., Osprian, I., Glieder, A., Schoemaker, H. E., Griengl, H., & Schwab, H. (2004). Enzymatic hydrolysis of cyanohydrins with recombinant nitrile hydratase and amidase from Rhodococcus erythropolis. Biotechnology Letters, 26, 1675–1680.CrossRefGoogle Scholar
  12. 12.
    Petrillo, K. L., Wu, S., Hann, E. C., Cooling, F. B., Ben-Bassat, A., Gavagan, J. E., Dicosimo, R., & Payne, M. S. (2005). Over-expression in Escherichia coli of a thermally stable and regio-selective nitrile hydratase from Comamonas testosteroni 5-MGAM-4D. Applied Microbiology and Biotechnology, 67, 664–670.CrossRefGoogle Scholar
  13. 13.
    Kim, S.-H., & Oriel, P. (2000). Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enzyme and Microbial Technology, 27, 492–501.CrossRefGoogle Scholar
  14. 14.
    Akimasa, M., Shinya, F., Kiyoshi, I., Hirofumi, S., & Takayoshi, W. (2010). Mutational and structural analysis of cobalt-containing nitrile hydratase on substrate and metal binding. The FEBS Journal, 271, 429–438.Google Scholar
  15. 15.
    Li, J., Wang, P., He, J. Y., Huang, J., & Tang, J. (2013). Efficient biocatalytic synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by a newly isolated Trichoderma asperellum ZJPH0810 using dual cosubstrate: ethanol and glycerol. Applied Microbiology and Biotechnology, 97, 6685–6692.CrossRefGoogle Scholar
  16. 16.
    Zheng, R. C., Yin, X. J., & Zheng, Y. G. (2016). Highly regioselective and efficient production of 1-cyanocyclohexaneacetamide by Rhodococcus aetherivorans ZJB1208 nitrile hydratase. Journal of Chemical Technology and Biotechnology, 91, 1314–1319.CrossRefGoogle Scholar
  17. 17.
    Nagasawa, T., Mathew, C. D., Mauger, J., & Yamada, H. (1988). Nitrile Hydratase-Catalyzed Production of Nicotinamide from 3-Cyanopyridine in Rhodococcus rhodochrous J1. Applied and Environmental Microbiology, 54, 1766–1769.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Bioengineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
  2. 2.College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouPeople’s Republic of China

Personalised recommendations