Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 352–364 | Cite as

Engineered Exosomes for Targeted Transfer of siRNA to HER2 Positive Breast Cancer Cells

  • Shabanali Khodashenas Limoni
  • Mehdi Forouzandeh MoghadamEmail author
  • Seyed Mohammad Moazzeni
  • Hosna Gomari
  • Fatemeh Salimi


Exosomes are the best options for gene targeting, because of their natural, nontoxic, non-immunogenic, biodegradable, and targetable properties. By engineering exosome-producing cells, ligands can be expressed fusing with exosomal surface proteins for targeting cancer cell receptors. In the present study, HER2-positive breast cancer cells were targeted with a modified exosome producing engineered HEK293T cell. For this purpose, the HEK293T cells were transduced by a lentiviral vector bearing-LAMP2b-DARPin G3 chimeric gene. Stable cells expressing the fusion protein were selected, and the exosomes produced by these cells were isolated from the culture medium, characterized, and then loaded with siRNA for subsequent delivery to the SKBR3 cells. Our results showed that stable HEK293T cells produced DARPin G3 on the surface of exosomes. These exosomes can bind specifically to HER2/Neu and are capable of delivering siRNA molecules against TPD52 gene into SKBR3 cell line down-regulating the gene expression up to 70%. Present approach is envisaged to facilitate genes and drugs transfer to HER2 cancer cells providing additional option for gene therapy and drug delivery.


Exosome HER2 siRNA delivery TPD52 Lentiviral vector 


Funding Information

This work was supported by educational program grant from Tarbiat Modares University and Iranian national science foundation: INSF (code No: 90006884).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2813_MOESM1_ESM.doc (36 kb)
ESM 1 (DOC 35 kb)


  1. 1.
    Rose, D. P., Boyar, A. P., & Wynder, E. L. (1986). International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer, 58(11), 2363–2371.CrossRefGoogle Scholar
  2. 2.
    Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., Cooper, D., Gansler, T., Lerro, C., Fedewa, S., Lin, C., Leach, C., Cannady, R. S., Cho, H., Scoppa, S., Hachey, M., Kirch, R., Jemal, A., & Ward, E. (2012). Cancer treatment and survivorship statistics, 2012. CA: A Cancer Journal for Clinicians, 62(4), 220–241.Google Scholar
  3. 3.
    Brannon-Peppas, L., & Blanchette, J. O. (2012). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 64, 206–212.CrossRefGoogle Scholar
  4. 4.
    Wahlgren J, Karlson TDL, Brisslert M, Sani FV, Telemo E, Sunnerhagen P, et al. (2012). Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Research, 40(17), e130.
  5. 5.
    Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9(6), 654–659.CrossRefGoogle Scholar
  6. 6.
    Lässer, C., Alikhani, V. S., Ekström, K., Eldh, M., Paredes, P. T., Bossios, A., et al. (2011). Human saliva, plasma and breast milk exosomes contain RNA: Uptake by macrophages. Journal of Translational Medicine, 9(1), 9.CrossRefGoogle Scholar
  7. 7.
    Camussi, G., Deregibus, M. C., Bruno, S., Cantaluppi, V., & Biancone, L. (2010). Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney International, 78(9), 838–848.CrossRefGoogle Scholar
  8. 8.
    Deregibus, M. C., Cantaluppi, V., Calogero, R., Iacono, M. L., Tetta, C., Biancone, L., et al. (2007). Endothelial progenitor cell–derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood, 110(7), 2440–2448.CrossRefGoogle Scholar
  9. 9.
    Kleijmeer, M. J., Escola, J. M., UytdeHaag, F. G., Jakobson, E., Griffith, J. M., Osterhaus, A. D., et al. (2001). Antigen loading of MHC class I molecules in the endocytic tract. Traffic, 2(2), 124–137.CrossRefGoogle Scholar
  10. 10.
    Tan, A., De La Peña, H., & Seifalian, A. M. (2010). The application of exosomes as a nanoscale cancer vaccine. International Journal of Nanomedicine, 5, 889.Google Scholar
  11. 11.
    Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29(4), 341–345.CrossRefGoogle Scholar
  12. 12.
    Sun, Y., & Liu, J. (2014). Potential of Cancer cell–derived exosomes in clinical application: A review of recent research advances. Clinical Therapeutics, 36(6), 863–872.CrossRefGoogle Scholar
  13. 13.
    Ohno, S.-i., Takanashi, M., Sudo, K., Ueda, S., Ishikawa, A., Matsuyama, N., et al. (2013). Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular Therapy, 21(1), 185–191.CrossRefGoogle Scholar
  14. 14.
    Manri, C., Yokoi, T., & Nishida, H. (2017). Size-selective harvesting of extracellular vesicles for strategic analyses towards tumor diagnoses. Applied Biochemistry and Biotechnology, 182(2), 609–623.CrossRefGoogle Scholar
  15. 15.
    Zahnd, C., Wyler, E., Schwenk, J. M., Steiner, D., Lawrence, M. C., McKern, N. M., et al. (2007). A designed ankyrin repeat protein evolved to picomolar affinity to Her2. Journal of Molecular Biology, 369(4), 1015–1028.CrossRefGoogle Scholar
  16. 16.
    Khodashenas, S., Moghadam, M. F., & Moazzeni, S. M. (2016). In silico design and verification of a chimer protein to target exosomes towards HER2 positive Cancer cells. Biosciences Biotechnology Research Asia, 13(2), 911–916.CrossRefGoogle Scholar
  17. 17.
    Khodashenas Limoni, S., Salimi, F., & Forouzandeh Moghaddam, M. (2017). Designing pLEX-LAMP-DARPin lentiviral vector for Exression of HER2 targeted DARPin on exosome surface. Journal of Mazandaran University of Medical. Sciences, 27(151), 12–23.Google Scholar
  18. 18.
    Kutner, R. H., Zhang, X.-Y., & Reiser, J. (2009). Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nature Protocols, 4(4), 495–505.CrossRefGoogle Scholar
  19. 19.
    Théry, C., Amigorena, S., Raposo, G., & Clayton, A. (2006). Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 3(22), 1–3. 9.Google Scholar
  20. 20.
    Escrevente, C., Keller, S., Altevogt, P., & Costa, J. (2011). Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer, 11(1), 108.CrossRefGoogle Scholar
  21. 21.
    Kooijmans, S. A., Stremersch, S., Braeckmans, K., de Smedt, S. C., Hendrix, A., Wood, M. J., et al. (2013). Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. Journal of Controlled Release, 172(1), 229–238.CrossRefGoogle Scholar
  22. 22.
    Li, J., Chen, X., Yi, J., Liu, Y., Li, D., Wang, J., Hou, D., Jiang, X., Zhang, J., Wang, J., Zen, K., Yang, F., Zhang, C. Y., & Zhang, Y. (2016). Identification and characterization of 293T cell-derived exosomes by profiling the protein, mRNA and microRNA components. PLoS One., 11(9), e0163043.CrossRefGoogle Scholar
  23. 23.
    Whitford, W., Ludlow, J. W., & Cadwell, J. J. (2015). Continuous production of exosomes: Utilizing the technical advantages of hollow-fiber bioreactor technology. Genetic Engineering & Biotechnology News, 35(16), 34.CrossRefGoogle Scholar
  24. 24.
    Zahnd, C., Kawe, M., Stumpp, M. T., de Pasquale, C., Tamaskovic, R., Nagy-Davidescu, G., Dreier, B., Schibli, R., Binz, H. K., Waibel, R., & Pluckthun, A. (2010). Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: Effects of affinity and molecular size. Cancer Research, 70(4), 1595–1605.CrossRefGoogle Scholar
  25. 25.
    Münch, R. C., Mühlebach, M. D., Schaser, T., Kneissl, S., Jost, C., Plückthun, A., Cichutek, K., & Buchholz, C. J. (2011). DARPins: An efficient targeting domain for lentiviral vectors. Molecular Therapy, 19(4), 686–693.CrossRefGoogle Scholar
  26. 26.
    Zeelenberg, I. S., Ostrowski, M., Krumeich, S., Bobrie, A., Jancic, C., Boissonnas, A., Delcayre, A., le Pecq, J. B., Combadiere, B., Amigorena, S., & Thery, C. (2008). Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Research, 68(4), 1228–1235.CrossRefGoogle Scholar
  27. 27.
    Hartman, Z. C., Wei, J., Glass, O. K., Guo, H., Lei, G., Yang, X.-Y., Osada, T., Hobeika, A., Delcayre, A., le Pecq, J. B., Morse, M. A., Clay, T. M., & Lyerly, H. K. (2011). Increasing vaccine potency through exosome antigen targeting. Vaccine, 29(50), 9361–9367.CrossRefGoogle Scholar
  28. 28.
    Tian, Y., Li, S., Song, J., Ji, T., Zhu, M., Anderson, G. J., Wei, J., & Nie, G. (2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials, 35(7), 2383–2390.CrossRefGoogle Scholar
  29. 29.
    Konecki, D. S., Foetisch, K., Zimmer, K.-P., Schlotter, M., & Konecki, U. L. (1995). An alternatively spliced form of the human lysosome-associated membrane protein-2 gene is expressed in a tissue-specific manner. Biochemical and Biophysical Research Communications, 215(2), 757–767.CrossRefGoogle Scholar
  30. 30.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning. New York: Cold spring harbor laboratory press.Google Scholar
  31. 31.
    Khodashenas, S., Moghadam, M. F., & Moazzeni, S. M. (2016). In silico design and verification of a chimer protein to target exosomes towards HER2 positive Cancer cells. Biosciences Biotechnology Research Asia., 13(2), 911–916.CrossRefGoogle Scholar
  32. 32.
    Momen-Heravi, F., Bala, S., Bukong, T., & Szabo, G. (2014). Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomedicine: Nanotechnology, Biology and Medicine., 10(7), 1517–1527.CrossRefGoogle Scholar
  33. 33.
    Vashisht, M., Rani, P., Onteru, S. K., & Singh, D. (2017). Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Applied Biochemistry and Biotechnology, 183(3), 993–1007.CrossRefGoogle Scholar
  34. 34.
    Roslan, N., Bièche, I., Bright, R. K., Lidereau, R., Chen, Y., & Byrne, J. A. (2014). TPD52 represents a survival factor in ERBB2-amplified breast cancer cells. Molecular Carcinogenesis, 53(10), 807–819.CrossRefGoogle Scholar
  35. 35.
    Roslan N. (2013). PhD thesis, Inhibiting tumor protein D52 function for anti-cancer therapy application. Sydney: University of Sydney.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Biotechnology, Faculty of Medical ScienceTarbiat Modares UniversityTehranIran
  2. 2.Immunogenetic Research CenterMazandaran University of Medical SciencesSariIran
  3. 3.Department of Medical Immunology, Faculty of Medical ScienceTarbiat Modares UniversityTehranIran

Personalised recommendations