Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 129–139 | Cite as

Phycocyanin Production by Aphanothece microscopica Nägeli in Synthetic Medium Supplemented with Sugarcane Vinasse

  • Dayane V. MoraisEmail author
  • Reinaldo G. Bastos
Article
  • 74 Downloads

Abstract

This study focused on the evaluation of mixotrophic and heterotrophic production of phycocyanin by A. microscopica, analysis of kinetic parameters, the effect of freezing and thawing on phycocyanin yield, and nutrient removal during heterotrophic growth. During mixotrophic growth, maximum phycocyanin yield (1.50 mgphycocyanin g−1biomass) was obtained after 12 h, while the heterotrophic cultivation yielded 1.39 mgphycocyanin g−1biomass. The mixotrophic cultivation of A. microscopica showed maximum specific growth rate of 0.025 h−1, against 0.010 h−1 for the photoautotrophic cultivation, and 0.08 h−1 in heterotrophic conditions. The mixotrophic cultivation had a specific rate of phycocyanin production of 9.86 mgphycocyanin mgbiomass−1 h−1, while the photoautotrophic had 2.81 mgphycocyanin mgbiomass−1 h−1, and the heterotrophic, 49.18 mgphycocyanin mgbiomass−1 h−1. Carbon and nitrogen contents present in sugarcane vinasse were decreased in 16.69 and 15.97%, respectively, after 6 h of heterotrophic growth. Thus, it was shown that the mixotrophic production of phycocyanin by Aphanothece microscopica Nägeli in BG11 medium supplemented with vinasse is feasible.

Keywords

Phycobiliproteins Wastewater Microalgae Cyanobacteria Mixotrophic growth 

Notes

Acknowledgments

The authors would like to thank the Centre for Improvement of Higher Education Personnel (CAPES) for financial support and LAST/CCA/UFSCar for the sugarcane chemical analysis.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Buick, R. (2008). When did oxygenic photosynthesis evolve? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1504), 2731–2743.Google Scholar
  2. 2.
    Murton, J., Nagarajan, A., Nguyen, A. Y., Liberton, M., Hancock, H. A., Pakrasi, H. B., & Timlin, J. A. (2017). Population-level coordination of pigment response in individual cyanobacterial cells under altered nitrogen levels. Photosynthesis Research, 124, 165–174.Google Scholar
  3. 3.
    Glazer, A. N. (1989). Light guides. The Journal of Biological Chemistry, 264(1), 1–4.Google Scholar
  4. 4.
    Tandeau de Marsac, N. (2003). Phycobiliproteins and phycobilisomes: the early observations. Photosynthesis Research, 76(1/3), 193–205.Google Scholar
  5. 5.
    Ledermann, B., Aras, M., & Frankenberg-Dinkel, N. (2017). Biosynthesis of cyanobacterial light-harvesting pigments and their assembly into phycobiliproteins. In P. C. Hallenbeck (Ed.), Modern topics in the phototrophic prokaryotes: metabolism, bioenergetics, and omics (Vol. 1, pp. 305–340). Cham: Springer International Publishing.Google Scholar
  6. 6.
    Sidler, W. A. (1994). Phycobilisome and phycobiliprotein structures. In D. A. Bryant (Ed.), The molecular biology of cyanobacteria (Vol. 1, pp. 139–216). Dordrecht: Kluwer Academic Publication.Google Scholar
  7. 7.
    MacColl, R. (1998). Cyanobacterial phycobilisomes. Journal of Structural Biology, 124(2-3), 311–334.Google Scholar
  8. 8.
    Sun, L., Wang, S., Zhao, M., Fu, X., Gong, X., et al. (2009). Phycobilisomes from cyanobacteria. In P. M. Gault & H. J. Maler (Eds.), Handbook on cyanobacteria: biochemistry, biotechnology and application (pp. 105–160). New York: Nova Science Publishers.Google Scholar
  9. 9.
    Wang, L., Qu, Y., Fu, X., Zhao, M., Wang, S., & Sun, L. (2014). Isolation, purification and properties of an R-phycocyanin from the phycobilisomes of a marine red macroalga Polysiphonia urceolata. PLoS One, 9(2), e87833.Google Scholar
  10. 10.
    Kuddus, M., Singh, P., Thomas, G., & Al-Hazimi, A. (2013). Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Research International, 2013.  https://doi.org/10.1155/2013/742859.
  11. 11.
    Esteves, F. A. (1988). Fundamentos de Limnologia (1st ed.). Rio de Janeiro: Editora Interciência.Google Scholar
  12. 12.
    Jacob-Lopes, E., Lacerda, L. M. C. F., & Franco, T. T. (2008). Biomass production and carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column photobioreactor. Biochemical Engineering Journal, 40(1), 27–34.Google Scholar
  13. 13.
    Bottomley, P. J., & Van Baalen, C. (1978). Characteristics of heterotrophic growth in the blue-green alga Nostoc sp. strain Mac. Journal of General Microbiology, 107(2), 309–318.Google Scholar
  14. 14.
    Eiler, A. (2006). Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Applied and Environmental Microbiology, 72(12), 7431–7437.Google Scholar
  15. 15.
    Yang, C., Hua, Q., & Shimizu, K. (2002). Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metabolic Engineering, 4(3), 202–216.Google Scholar
  16. 16.
    Feng, X., Bandyopadhyay, A., Berla, B., Page, L., Wu, B., Pakrasi, H. B., & Tang, Y. J. (2010). Mixotrophic and photoheterotrophic metabolism in Cyanothecesp. ATCC 51142 under continuous light. Microbiology, 156(8), 2566–2574.Google Scholar
  17. 17.
    Cheng, F., & Zhang, Y. (1997). High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and Microbial Technology, 20(3), 221–224.Google Scholar
  18. 18.
    Muliterno, A., Mosele, P. C., Costa, J. A. V., Hemkemeier, M., Bertolin, T. E., & Colla, L. M. (2005). Mixotrophic growth of Spirulina platensis in fed-batch mode. Ciência e Agrotecnologia, 29(6), 1132–1138.Google Scholar
  19. 19.
    Sloth, J. K., Wiebe, M. G., & Eriksen, N. T. (2006). Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme and Microbial Technology, 38(1-2), 168–175.Google Scholar
  20. 20.
    Moraes, B. S., Zaiat, M., & Bonomi, A. (2015). Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: challenges and perspectives. Renewable and Sustainable Energy Reviews, 44, 888–903.Google Scholar
  21. 21.
    UNICA. (2017). Relatório final da safra 2016/2017—Região Centro-Sul. UNICA, 30p.Google Scholar
  22. 22.
    Christofoletti, C. A., Escher, J. P., Correia, J. E., Marinho, J. F. U., & Fontanetti, C. S. (2013). Sugarcane vinasse: environmental implications of its use. Waste Management, 33(12), 2752–2761.Google Scholar
  23. 23.
    Sumardiono, S. (2013). The effect of COD/N ratios and pH control to biogas production from vinasse. International Journal of Biochemistry Research & Review, 3(4), 401–413.Google Scholar
  24. 24.
    Ortegón, G. P., Arboleda, F. M., Candela, L., Tamoh, K., & Valdes-Abellan, J. (2016). Vinasse application to sugar cane fields. Effect on the unsaturated zone and groundwater at Valle del Cauca (Colombia). The Science of the Total Environment, 539, 410–419.Google Scholar
  25. 25.
    Parnaudeau, V., Condom, N., Oliver, R., Cazevieille, P., & Recous, S. (2008). Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresource Technology, 99(6), 1553–1562.Google Scholar
  26. 26.
    Santana, H., Cereijo, C. R., Teles, V. C., Nascimento, R. C., Fernandes, M. S., Brunale, P., Campanha, R. C., Soares, I. P., Silva, F. C. P., Sabaini, P. S., Siqueira, F. G., & Brasil, B. S. A. F. (2017). Microalgae cultivation in sugarcane vinasse: selection, growth and biochemical characterization. Bioresource Technology, 228, 133–140.Google Scholar
  27. 27.
    Ripka, R., Deruelles, J., Waterbury, J. B., Herdan, M., & Stanier, R. Y. (1979). Generic assignments strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111, 1–61.Google Scholar
  28. 28.
    Bennett, A., & Bogorad, L. (1973). Complimentary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2), 419–435.Google Scholar
  29. 29.
    Silveira, S. T., Burkert, J. F. M., Costa, J. A. V., Burkert, C. A. V., & Kalil, S. J. (2007). Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technology, 98(8), 1629–1634.Google Scholar
  30. 30.
    Levenspiel, O. (1998). Chemical reaction engineering, 3rd edn. New York: John Wiley & Sons.Google Scholar
  31. 31.
    Fay, P. (1983). The blue-greens (Cyanophyta—Cyanobacteria) (p. 88). Baltimore: Edward Arnold.Google Scholar
  32. 32.
    Streit, N. M., Ramírez-Mérida, L. G., Queiroz Zepka, L., Jacob-Lopes, E., & Queiroz, M. I. (2017). Pigment production by Aphanothece microscopica Nageli from dairy industrial waste. Ingeniare. Revista chilena de ingeniería, 25(2), 350–358.Google Scholar
  33. 33.
    Sarada, R., Pillai, M. G., & Ravishankar, G. A. (1999). Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 34(8), 795–801.Google Scholar
  34. 34.
    Tuan, H., Son, P., & Thuy, P. (2011). A study on extraction and determination of some properties of Spirulina extracts. Tap Chi Sinh Hoc, 33, 60–65.Google Scholar
  35. 35.
    Horváth, H., Kovács, A. W., Riddick, C., & Présing, M. (2013). Extraction methods for phycocyanin determination in freshwater filamentous cyanobacteria and their application in a shallow lake. European Journal of Phycology, 48(3), 278–286.Google Scholar
  36. 36.
    Chojnacka, K., & Marquez-Rocha, F. J. (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology, 3, 21–34.Google Scholar
  37. 37.
    Meireles dos Santos, A., Vieira, K. R., Basso Sartori, R., Meireles dos Santos, A., Queiroz, M. I., Queiroz Zepka, L., & Jacob-Lopes, E. (2017). Heterotrophic cultivation of cyanobacteria: study of effect of exogenous sources of organic carbon, absolute amount of nutrients, and stirring speed on biomass and lipid productivity. Frontiers in Bioengineering and Biotechnology, 5, 12.Google Scholar
  38. 38.
    Grobbelaar, J. U. (2013). Inorganic algal nutrition. In A. Richmond & Q. Hu (Eds.), Handbook of microalgal culture applied phycology and biotechnology, 2nd edn. (pp. 123–133). Hoboken: Wiley.Google Scholar
  39. 39.
    Jia, H., & Yuan, Q. (2016). Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environmental Science, 2, 1275089.Google Scholar
  40. 40.
    Pedro-Escher, J., Maziviero, G. T., & Fontanetti, C. S. (2014). Mutagenic action of sugarcane vinasse in the Tradescantia pallida test system. Journal of Ecosystem & Ecography, 4, 145.Google Scholar
  41. 41.
    EPA. (1993). Nitrogen control. USEPA, Office of Research and development.Google Scholar
  42. 42.
    Zhu, G. B., Peng, Y. Z., Wu, S. Y., & Wang, S. Y. (2007). Effect of influent flow rate distribution on the performance of step-feed biological nitrogen removal process. Chemical Engineering Journal, 131(1-3), 319–328.Google Scholar
  43. 43.
    Zhu, G. B., Peng, Y. Z., Wang, S. Y., Zuo, S. L., Wang, Y. Y., & Guo, J. H. (2007). Development and experimental evaluation of a steady-state model for the step-feed biological nitrogen removal process. Chinese Journal of Chemical Engineering, 15(3), 411–417.Google Scholar
  44. 44.
    Zhu, G. B., Peng, Y., Li, B., Guo, J., Yang, Q., & Wang, S. (2008). Biological removal of nitrogen from wastewater. Reviews of Environmental Contamination and Toxicology, 192, 159–195.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Agricultural Sciences (CCA)Federal University of São CarlosArarasBrazil

Personalised recommendations