Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 211–220 | Cite as

Bio-cellulose Production by Beijerinckia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 in Sago By-product Medium

  • W. W. Y. Voon
  • B. J. Muhialdin
  • N. L. Yusof
  • Y. Rukayadi
  • A. S. Meor HussinEmail author


Bio-cellulose is the microbial extracellular cellulose that is produced by growing several microorganisms on agriculture by-products, and it is used in several food applications. This study aims to utilize sago by-product, coconut water, and the standard medium Hestrin-Schramm as the carbon sources in the culture medium for bio-cellulose production. The bacteria Beijerinkia fluminensis WAUPM53 and Gluconacetobacter xylinus 0416 were selected based on their bio-cellulose production activity. The structure was determined by Fourier transform infrared spectroscopy and scanning electron microscopy, while the toxicity safety was evaluated by brine shrimp lethality test. The results of Fourier transform infrared spectroscopy showed that the bio-cellulose produced by B. fluminensis cultivated in sago by-products was of high quality. The bio-cellulose production by B. fluminensis in the sago by-product medium was slightly higher than that in the coconut water medium and was comparable with the production in the Hestrin-Schramm medium. Brine shrimp lethality test confirmed that the bio-cellulose produced by B. fluminensis in the sago by-product medium has no toxicity, which is safe for applications in the food industry. This is the first study to determine the high potential of sago by-product to be used as a new carbon source for the bio-cellulose production.


Bio-cellulose Sago by-product Cytotoxicity Fermentation Agriculture waste 


Funding Information

The present study was supported by grant (UPM/700 – 1/2/Geran Putra) from the Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Keshk, S. M. A. S. (2014). Bacterial cellulose production and its industrial applications. Journal of Bioprocessing and Biotechniques, 4, 150–159.CrossRefGoogle Scholar
  2. 2.
    Carreira, P., Mendes, J. A. S., Trovatti, E., Serafim, L. S., Freire, C. S. R., Silvestre, A. J. D., & Neto, C. P. (2011). Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresource Technology, 102(15), 7354–7360.CrossRefGoogle Scholar
  3. 3.
    Tanskul, S., Amornthatree, K., & Jaturonlak, N. (2013). A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydrate Polymers, 92(1), 421–428.CrossRefGoogle Scholar
  4. 4.
    Shi, Z., Zhang, Y., Phillips, G. O., & Yang, G. (2014). Utilization of bacterial cellulose in food. Food Hydrocolloids, 35, 539–545.CrossRefGoogle Scholar
  5. 5.
    Lin, S., Calvar, I. L., Catchmark, J. M., Liu, J., Demirci, A., & Cheng, K. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose, 20(5), 2191–2219.CrossRefGoogle Scholar
  6. 6.
    Okiyama, A., Motoki, M., & Yamanaka, S. (1993). Bacterial cellulose IV. Application to processed foods. Food Hydrocolloids, 6(6), 503–511.CrossRefGoogle Scholar
  7. 7.
    Phisalaphong, M., & Chiaoprakobkij, N. (2012). Applications and products: nata de coco. In M. Gama, P. Gatenholm, & D. Klemm (Eds.), Bacterial nanocellulose: a sophisticated multifunctional material (pp. 143–156). Boca Raton: CRC Press.Google Scholar
  8. 8.
    Yanti, N. A., Ahmad, S. W., Ambardini, S., & Muhiddin, N. H. (2017). Screening of acetic acid bacteria from pineapple by-product for bacterial cellulose production using sago liquid by-product. Biosaintifika: Journal of Biology & Biology Education, 9(3), 387–393.CrossRefGoogle Scholar
  9. 9.
    Stepanov, N., & Efremenko, E. (2018). “Deceived” concentrated immobilized cells as biocatalyst for intensive bacterial cellulose production from various sources. Catalysts, 8(1), 33.CrossRefGoogle Scholar
  10. 10.
    Kiziltas, E. E., Kiziltas, A., & Gardner, D. J. (2015). Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydrate Polymers, 124, 131–138.CrossRefGoogle Scholar
  11. 11.
    Gomes, F. P., Silva, N. H. C. S., Trovatti, E., Serafim, L. S., Duarte, M. F., Silvestre, A. J. D., Neto, C. P., & Freire, C. S. R. (2013). Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass and Bioenergy, 55, 205–211.CrossRefGoogle Scholar
  12. 12.
    Istalaksana, P., Gandhi, Y., Hadi, P., Rochani, A., Mbaubedari, K., & Bachri, S. (2005). Conversion of natural sago forest into a sustainable sago palm plantation at Masirei District, Waropen, Papua, Indonesia: feasibility study. In Karafir, Y.O., Jong, F.S., & Fere, E. (Eds.), Proceedings of the 8th International Sago Symposium Monokwari (pp. 65–77). Manokwari: Universitas Negeri Papua Press.Google Scholar
  13. 13.
    Ministry of Plantation Industries and Commodities (MPIC). (2014). Malaysia: basic statistics on sago. Available from: Accessed 16 Dec 2016.
  14. 14.
    Lai, J. C., Rahman, W. A. W. A., & Toh, W. Y. (2013). Characterisation of sago pith by-product and its composites. Industrial Crops and Products, 45, 319–326.CrossRefGoogle Scholar
  15. 15.
    Kumoro, A. C., Ngoh, G. C., Hasan, M., Ong, C. H., & Teoh, E. C. (2008). Conversion of fibrous sago (Metroxylon sagu) by-product into fermentable sugar via acid and enzymatic hydrolysis. Asian Journal of Scientific Research, 4, 412–420.CrossRefGoogle Scholar
  16. 16.
    Adeni, D. S. A., Bujang, K. B., Hassan, M. A., & Abd-Aziz, S. (2013). Recovery of glucose from residual starch of sago hampas for bioethanol production. Journal of Biomed Research International, 2013, 1-8.Google Scholar
  17. 17.
    Voon, W. W. Y., Rukayadi, Y., & Meor Hussin, A. S. (2016). Isolation and identification of bio-cellulose-producing bacterial strains from Malaysian acidic fruits. Letters in Applied Microbiology, 62(5), 428–433.CrossRefGoogle Scholar
  18. 18.
    Aydin, Y. A., & Aksoy, N. D. (2009). Isolation of cellulose producing bacteria from wastes of vinegar fermentation. In Proceedings of the World Congress on Engineering and Computer Science 2009 (Vol I). San Francisco: WCECS.Google Scholar
  19. 19.
    Kurosumi, A., Sasaki, C., Yamashita, Y., & Nakamura, Y. (2009). Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydrate Polymers, 76(2), 333–335.CrossRefGoogle Scholar
  20. 20.
    Zakaria, J., & Nazeri, M. A. (2012). Optimization of bacterial cellulose production from pineapple waste: Effect of temperature, pH and concentration. In 5th Engineering Conference, “Engineering Towards Change – Empowering Green Solutions”, 10-12th July 2012, Kuching Sarawak.Google Scholar
  21. 21.
    Halib, N., Amin, M. C. I. M., & Ahmad, I. (2012). Physicochemical properties and characterization of Nata de coco from local food industries as a source of cellulose. Sains Malaysiana, 41, 205–211.Google Scholar
  22. 22.
    Mohammadkazemi, F., Azin, M., & Ashori, A. (2015). Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 117, 518–523.CrossRefGoogle Scholar
  23. 23.
    Sheykhnazari, S., Tabarsa, T., Ashori, A., Shakeri, A., & Golalipour, M. (2011). Bacterial synthesized cellulose nanofibers: effects of growth times and culture mediums on the structural characteristics. Carbohydrate Polymers, 86(3), 1187–1191.CrossRefGoogle Scholar
  24. 24.
    Ved, C. H., More, N. S., Bharate, S. S., & Bharate, S. B. (2010). Cytotoxicity screening of selected Indian medicinal plants using brine-shrimp lethality bioassay. Advances in Natural and Applied Sciences, 4, 389–395.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • W. W. Y. Voon
    • 1
  • B. J. Muhialdin
    • 2
  • N. L. Yusof
    • 1
    • 3
  • Y. Rukayadi
    • 2
  • A. S. Meor Hussin
    • 1
    • 3
    Email author
  1. 1.Department of Food Technology, Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Food Science, Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Halal Products Research InstituteUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations