Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 116–128 | Cite as

One-Step Bioprocess of Inulin to Product Inulo-Oligosaccharides Using Bacillus subtilis Secreting an Extracellular Endo-Inulinase

  • Ruifan Jiang
  • Yibin Qiu
  • Weiwei Huang
  • Li Zhang
  • Feng Xue
  • Hao Ni
  • Difen Mei
  • Jian GaoEmail author
  • Hong XuEmail author
Article

Abstract

Inulo-oligosaccharides (IOSs), a novel food additive and health product, represent a promising alternative to antibiotics. As prebiotics, IOSs can be obtained from inulin by endo-inulinase-mediated hydrolysis. Nonetheless, enzymatic catalysis is not feasible industrially because of the required catalytic conditions and cost. In this study, a 2331-bp optimized gene inuQ (from Pseudomonas mucidolens) encoding endo-inulinase was cloned into shuttle vector PHY300PLK and transfected into Bacillus subtilis WB800-R, with the simultaneous deletion of gene sacC encoding levanase. The maximal IOS yield after hydrolysis of the crude extract of inulin was 67.84 ± 0.72 g/L for a recombinant strain with the signal peptide nprB from alkaline protease and promoter P43. The conversion rate reached 75.38%. For the major IOSs, the degree of polymerization was between 3 and 5. This study offers a simple and efficient one-step bioprocess for IOS production from inulin through secretion of an extracellular heterologous endo-inulinase by B. subtilis.

Keywords

Inulo-oligosaccharides Inulin Endo-inulinase Bacillus subtilis 

Notes

Funding Information

This work was financially supported by the National Natural Science Foundation of China (Grant 21376203), the Promotion Program of Achievements in Scientific Research for Industrial Production of Higher Education of Jiangsu Province (Grant JHB2011-54), Qinglan Project of Higher Education of Jiangsu Province, Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents of Jiangsu Province, Jiangsu Agricultural Key Technology Research and Development Program (Grant BE2012394).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2806_MOESM1_ESM.docx (83 kb)
ESM 1 (DOCX 82 kb)

References

  1. 1.
    Pandey, A., Soccol, C. R., Selvakumar, P., Soccol, V. T., Krieger, N., & Fontana, J. D. (1999). Recent developments in microbial inulinases. Applied Biochemistry and Biotechnology, 81(1), 35–52.Google Scholar
  2. 2.
    Hidaka, H., Eida, T., Takizawa, T., Tokunaga, T., & Tashiro, Y. (1986). Effect of fructooligosaccharides on intestinal flora and human health. Bifidobacterla Microflora, 5(1), 37–50.Google Scholar
  3. 3.
    Wada, K., Watanabe, J., Mizutani, J., Tomoda, M., Suzuki, H., & Saitoh, Y. (1992). Effect of soybean oligosaccharides in a beverage on human fecal flora and metabolites. Nippon Nogei-kagaku Kaishi, 66(2), 127–135. (in Japanese).Google Scholar
  4. 4.
    Yun, J. W. (1996). Fructooligosaccharides-occurrence, preparation, and application. Enzyme and Microbial Technology, 19(2), 107–117.Google Scholar
  5. 5.
    Chen, M., Lei, X., Chen, C., Zhang, S., Xie, J., & Wei, D. (2015). Cloning, overexpression, and characterization of a highly active endoinulinase gene from Aspergillus fumigatus Cl1 for production of inulooligosaccharides. Applied Biochemistry and Biotechnology, 175(2), 1153–1167.Google Scholar
  6. 6.
    Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Recent trends in the microbial production: analysis and application of fructooligosaccharides. Trends in Food Science & Technology, 16(10), 442–457.Google Scholar
  7. 7.
    Uhm, T., Chae, K.-S., Lee, D., Kim, H., Cassart, J., & Vandenhaute, J. (1998). Cloning and nucleotide sequence of the endoinulinase-encoding gene, inu2, from Aspergillus ficuum. Biotechnology Letters, 20(8), 809–812.Google Scholar
  8. 8.
    Nishizawa, K., Nakajima, M., & Nabetani, H. (2001). Kinetic study on transfructosylation by l-fructofuranosidase from Aspergillus niger ATCC 20611 and availability of a membrane reactor for fructooligosaccharide production. Food Science and Technology Research, 7(1), 39–44.Google Scholar
  9. 9.
    Chi, Z., Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82(2), 211–220.Google Scholar
  10. 10.
    Yun, J., Park, J., Song, C., Lee, C., Kim, J., & Song, S. (2000). Continuous production of inulo-oligosaccharides from chicory juice by immobilized endoinulinase. Bioprocess Engineering, 22(3), 189–194.Google Scholar
  11. 11.
    Ettalibi, M., & Baratti, J. C. (1987). Purification, properties and comparison of invertase, exoinulinases and endoinulinases of Aspergillus ficuum. Applied Microbiology and Biotechnology, 26(1), 13–20.Google Scholar
  12. 12.
    Xu, Y.-B., Zheng, Z.-J., Xu, Q.-Q., Yong, Q., & Ouyang, J. (2016). Efficient conversion of inulin to inulooligosaccharides through endoinulinase from Aspergillus niger. Journal of Agricultural and Food Chemistry, 64(12), 2612–2618.Google Scholar
  13. 13.
    Finn, R. D., Tate, J., & Mistry, J. (2008). The pfam protein families database. Nucleic Acids Research, 36, 281–288.Google Scholar
  14. 14.
    Scigelova, M., Singh, S., & Crout, D. H. (1999). Glycosidases—a great synthetic tool. Journal of Molecular Catalysis B: Enzymatic, 6(5), 483–494.Google Scholar
  15. 15.
    Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure, 3(9), 853–859.Google Scholar
  16. 16.
    Roberfroid, M. B., Van Loo, J. A., & Gibson, G. R. (1998). The bifidogenic nature of chicory inulin and its hydrolysis products. Journal of Nutrition, 128(1), 11–19.Google Scholar
  17. 17.
    Li, Y., Liu, G.-L., Wang, K., Chi, Z.-M., & Madzak, C. (2012). Overexpression of the endo-inulinase gene from Arthrobacter sp. S37 in Yarrowia lipolytica and characterization of the recombinant endo-inulinase. Journal of Molecular Catalysis B: Enzymatic, 74(1-2), 109–115.Google Scholar
  18. 18.
    Nakamura, T., Shitara, A., Matsuda, S., Matsuo, T., Suiko, M., & Ohta, K. (1997). Production, purification and properties of an endoinulinase of Penicillium sp. TN-88 that liberates inulotriose. Journal of Fermentation and Bioengineering, 84(4), 313–318.Google Scholar
  19. 19.
    Kim, D. H., Choi, Y. J., Song, S. K., & Yun, J. W. (1997). Production of inulo-oligosaccharides using endo-inulinase from a Pseudomonas sp. Journal of Fermentation and Bioengineering, 19, 369–372.Google Scholar
  20. 20.
    Chen, X.-M., Xu, X.-M., Jin, Z.-Y., & Chen, H.-Q. (2012). Expression of an endoinulinase from Aspergillus ficuum JNSP5-06 in Escherichia coli and its characterization. Carbohydrate. Polymers, 88(2), 748–753.Google Scholar
  21. 21.
    He, M., Wu, D., Wu, J., & Chen, J. (2014). Enhanced expression of endoinulinase from Aspergillus niger by codon optimization in Pichia pastoris and its application in inulooligosaccharide production. Journal of Industrial Microbiology and Biotechnology, 41(1), 105–114.Google Scholar
  22. 22.
    Jong, W. Y., Yong, J. C., Chii, H. S., & Seung, K. S. (1999). Microbial production of inulo-oligosaccharides by an endoinulinase from Pseudomonas sp. expressed in Escherichia coli. Journal of Bioscience and Bioengineering, (3), 291–295.Google Scholar
  23. 23.
    Westers, L., Westers, H., & Quax, W. J. (2004). Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochemica Biophysica Acta, 1694(1-3), 299–310.Google Scholar
  24. 24.
    Chen, M., Lei, X., Chen, C., Zhang, S., Xie, J., & Wei, D. (2015). Cloning, overexpression, and characterization of a highly active endoinulinase gene from Aspergillus fumigatus Cl1 for production of inulo-oligosaccharides. Applied Biochemistry and Biotechnology, 175(2), 1153–1167.Google Scholar
  25. 25.
    Gill, P. K., Manhas, R. K., Singh, J., & Singh, P. (2004). Purification and characterization of an exo-inulinase from Aspergillus fumigatus. Applied Biochemistry and Biotechnology, 117(1), 19–32.Google Scholar
  26. 26.
    Leelasuphakul, W., Hemmanee, P., & Chuenchitt, S. (2008). Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biology and Technology, 48(1), 113–121.Google Scholar
  27. 27.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.Google Scholar
  28. 28.
    Park, S., Jeong, H. Y., Kim, H. S., Yang, M. S., & Chae, K. S. (2001). Enhanced production of Aspergillus ficuum endoinulinase in Saccharomyces cerevisiae by using the SUC2 deletion mutation. Enzyme Microbiology. Technology, 29(2-3), 107–110.Google Scholar
  29. 29.
    Gao, J., Xu, H., Li, Q. -J., Feng, X.-H., & Li, S. (2010). Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresource Technology, 101(18), 7076–7082.Google Scholar
  30. 30.
    Zhang, W., Gao, W.-X., Feng, J., Zhang, C., He, Y.-L., Cao, M. F., Li, Q., Sun, Y., Yang, C., Song, C.-J., & Wang, S.-F. (2014). A markerless gene replacement method for B.amyloliquefaciens LL3 and its use in genome reduction and improvement of poly-γ-glutamic acid production. Applied Microbiology and Biotechnology, 98(21), 8963–8973.Google Scholar
  31. 31.
    Wu, S. C., Ye, R., C, X., Wu, S. C., & Ng, S. L. (1998). Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones. Journal of Bacteriology, 180(11), 2830–2835.Google Scholar
  32. 32.
    Kolkman, M. A. B., van der Ploeg, R., Bertels, M., van Dijk, M., van der Laan, J., van Dijl, J. M., & Ferrari, E. (2008). The twin-arginine signal peptide of Bacillus subtilis YwbN can direct either Tat- or Sec- dependent secretion of different cargo proteins: Secretion of active subtilisin via the B. subtilis Tat pathway. Applied and Environmental Microbiology, 74(24), 7507–7513.Google Scholar
  33. 33.
    Schumann, W. (2007). Production of recombinant proteins in Bacillus subtilis. Advances in Applied Microbiology, 62, 137–189.Google Scholar
  34. 34.
    Zhu, F.-M., Ji, S.-Y., Zhang, W.-W., Li, W., & Cao, B.-Y. (2008). Development and application of a novel signal peptide probe vector with PGA as reporter in Bacillus subtilis WB700: twenty-four Tat pathway signal peptides from Bacillus subtilis were monitored. Molecular Biotechnology, 39(3), 225–230.Google Scholar
  35. 35.
    Aymerich, S. G., Gonzy-Treboul, G., & Steinmetz, M. (1986). 5'-Noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis. Journal of Bacteriology, 166(3), 993–998.Google Scholar
  36. 36.
    Mullin, W.-J., Modler, H.-W., Farnworth, E.-R., & Payne, A. (1994). The macronutrient content of fractions from Jerusalem artichoke tubers (Helianthus tubersosus). Food Chemistry, 51(3), 263–269.Google Scholar
  37. 37.
    Cao, C., Zhang, L., Gao, J., Xu, H., Xue, F., Huang, W.-W., & Li, Y. (2017). Research on the solid state fermentation of Jerusalem artichoke pomace for producing R,R-2,3-butanediol by Paenibacillus polymyxa ZJ-9. Applied Biochemistry and Biotechnology, 182(2), 687–696.Google Scholar
  38. 38.
    Wang, D., Li, F. L., & Wang, S. A. (2016). A one-step bioprocess for production of high-content fructo-oligosaccharides from inulin by yeast. Carbohydrate Polymers, 151, 1220–1226.Google Scholar
  39. 39.
    Wang, P. P., Ma, J. F., Zhang, Y., Zhang, M., Wu, M. K., Dai, Z. X., & Jiang, M. (2016). Efficient secretory overexpression of endoinulinase in Escherichia coli and the production of inulooligosaccharides. Applied Biochemistry and Biotechnology, 123, 230–234.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ruifan Jiang
    • 1
    • 2
  • Yibin Qiu
    • 1
  • Weiwei Huang
    • 1
  • Li Zhang
    • 2
  • Feng Xue
    • 2
  • Hao Ni
    • 2
  • Difen Mei
    • 2
  • Jian Gao
    • 2
    Email author
  • Hong Xu
    • 1
    Email author
  1. 1.State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light IndustryNanjing Tech UniversityNanjingPeople’s Republic of China
  2. 2.School of Marine and BioengineeringYancheng Institute of TechnologyYanchengPeople’s Republic of China

Personalised recommendations