Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 310–322 | Cite as

Anti-Diabetic and Anti-Nephritic Activities of Grifola frondosa Mycelium Polysaccharides in Diet-Streptozotocin-Induced Diabetic Rats Via Modulation on Oxidative Stress

  • Ling Kou
  • Mingzhao Du
  • Peijing Liu
  • Baohai Zhang
  • Yizhi Zhang
  • Ping Yang
  • Mengyuan Shang
  • Xiaodong Wang
Article

Abstract

Grifola frondosa is an edible fungus with a variety of potential pharmacological activities. This study investigates the hypoglycemic, anti-diabetic nephritic, and antioxidant properties of G. frondosa polysaccharides in diet-streptozotocin-induced diabetic rats. After a 4-week treatment with 100 mg/kg of metformin and 200 mg/kg of one of four different G. frondosa polysaccharide mixtures (especially GFPS3 and GFPS4), diabetic rats had enhanced body weight and suppressed plasma glucose, indicating the hypoglycemic activities of the G. frondosa polysaccharides. G. frondosa polysaccharides regulated the level of serum creatinine, blood urea nitrogen, N-acetyl-β-d-glucosaminidase, and albuminuria; inhibited the serum levels of interleukin (IL)-2, IL-6, and TNF-α; and enhanced the serum levels of matrix metalloproteinase 9 and interferon-α, confirming their anti-diabetic nephritic activities. G. frondosa polysaccharides ameliorated the pathological alterations in the kidneys of diabetic rats. Moreover, G. frondosa polysaccharides modulated the serum levels of oxidant factors such as superoxide dismutase, glutathione peroxidase, catalase, malondialdehyde, and reactive oxygen species, revealing their antioxidant properties. Furthermore, the administration of G. frondosa polysaccharides inhibited nuclear factor kappa B activities in the serum and kidneys. All of the data revealed that the activation of nuclear factor kappa B plays a central role in G. frondosa polysaccharide-mediated anti-diabetic and anti-nephritic activities.

Keywords

Grifola frondosa Anti-diabetes Nephritic protection Oxidative stress Nuclear factor kappa B 

Notes

Acknowledgements

This work is supported by the Project from Health and Family Planning Commission Project from Jiangsu province (no. H201536) and Scientific Research Program of the Affiliated Hospital of Jiangsu University in China (no. jdfyRC-2015004).

Compliance with Ethical Standards

Conflict of Interest

The authors have declared that there is no conflict of interest.

References

  1. 1.
    Sheikh, B. A., Pari, L., Rathinam, A., & Chandramohan, R. (2015). Trans-anethole, a terpenoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Biochimie, 112, 57–65.CrossRefGoogle Scholar
  2. 2.
    Kerner, W., & Bruckel, J. (2014). Definition, classification and diagnosis of diabetes mellitus. Experimental and Clinical Endocrinology & Diabetes, 122(7), 384–386.CrossRefGoogle Scholar
  3. 3.
    Putakala, M., Gujjala, S., Nukala, S., & Desireddy, S. (2017). Beneficial effects of Phyllanthus amarus against high fructose diet induced insulin resistance and hepatic oxidative stress in male Wistar rats. Applied Biochemistry and Biotechnology, 183(3), 744–764.CrossRefGoogle Scholar
  4. 4.
    Jiang, P., Dong, Z., Ma, B., Ni, Z., Duan, H., Li, X., Wang, B., Ma, X., Wei, Q., Ji, X., & Li, M. (2016). Effect of Vanadyl rosiglitazone, a new insulin-mimetic vanadium complexes, on glucose homeostasis of diabetic mice. Applied Biochemistry and Biotechnology, 180(5), 841–851.CrossRefGoogle Scholar
  5. 5.
    Zhu, K., Kakehi, T., Matsumoto, M., Iwata, K., Ibi, M., Ohshima, Y., Zhang, J., Liu, J., Wen, X., Taye, A., Fan, C., Katsuyama, M., Sharma, K., & Yabe-Nishimura, C. (2015). NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney. Free Radical Biology & Medicine, 83, 21–30.CrossRefGoogle Scholar
  6. 6.
    Fornoni, A., Ijaz, A., Tejada, T., & Lenz, O. (2008). Role of inflammation in diabetic nephropathy. Current Diabetes Reviews, 4(1), 10–17.CrossRefGoogle Scholar
  7. 7.
    Yuan, H. D., Huang, B., & Chung, S. H. (2011). Protective effect of cinnamaldehyde on streptozotocin-induced damage in rat pancreatic β-cells. Food Science and Biotechnology, 20(5), 1271–1276.CrossRefGoogle Scholar
  8. 8.
    Elsherbiny, N. M., El-Sherbiny, M., & Said, E. (2015). Amelioration of experimentally induced diabetic nephropathy and renal damage by nilotinib. Journal of Physiology and Biochemistry, 71(4), 635–648.CrossRefGoogle Scholar
  9. 9.
    Wu, J. Q., Kosten, T. R., & Zhang, X. Y. (2013). Free radicals, antioxidant defense systems, and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 46, 200–206.CrossRefGoogle Scholar
  10. 10.
    Khatiwala, R. V., Zhang, S., Li, X., Devejian, N., Bennett, E. and Cai, C. (2018) Inhibition of p16(INK4A) to rejuvenate aging human cardiac progenitor cells via the upregulation of anti-oxidant and NFkappaB signal pathways. Stem cell reviews.Google Scholar
  11. 11.
    Suryavanshi, S. V., & Kulkarni, Y. A. (2017). NF-κβ: a potential target in the management of vascular complications of diabetes. Frontiers in Pharmacology, 8.Google Scholar
  12. 12.
    Kania, D. S., Gonzalvo, J. D., & Weber, Z. A. (2011). Saxagliptin: a clinical review in the treatment of type 2 diabetes mellitus. Clinical Therapeutics, 33(8), 1005–1022.CrossRefGoogle Scholar
  13. 13.
    Scheen, A. (2007). Antidiabetic agents in subjects with mild dysglycaemia: prevention or early treatment of type 2 diabetes? Diabetes & Metabolism, 33(1), 3–12.CrossRefGoogle Scholar
  14. 14.
    Salihu Shinkafi, T., Bello, L., Wara Hassan, S., & Ali, S. (2015). An ethnobotanical survey of antidiabetic plants used by Hausa-Fulani tribes in Sokoto, Northwest Nigeria. Journal of Ethnopharmacology, 172, 91–99.CrossRefGoogle Scholar
  15. 15.
    Liu, C., Song, J., Teng, M., Zheng, X., Li, X., Tian, Y., Pan, M., Li, Y., Lee, R. J., & Wang, D. (2016). Antidiabetic and antinephritic activities of aqueous extract of Cordyceps militaris fruit body in diet-streptozotocin-induced diabetic Sprague Dawley rats. Oxidative Medicine and Cellular Longevity, 2016, 9685257.Google Scholar
  16. 16.
    Liu, C., Zeng, X., Li, Y., Ma, H., Song, J., Li, Y., Zhou, Y., Lee, R. J., & Wang, D. (2017). Investigation of hypoglycemic, hypolipidemic and antinephritic activities of Paecilomyces tenuipes N45 in diet/streptozotocin induced diabetic rats. Molecular Medicine Reports, 15(5), 2807–2813.CrossRefGoogle Scholar
  17. 17.
    Du, L., Liu, C., Teng, M., Meng, Q., Lu, J., Zhou, Y., Liu, Y., Cheng, Y., Wang, D., & Teng, L. (2016). Anti-diabetic activities of Paecilomyces tenuipes N45 extract in alloxan-induced diabetic mice. Molecular Medicine Reports, 13(2), 1701–1708.CrossRefGoogle Scholar
  18. 18.
    He, X., Wang, X., Fang, J., Chang, Y., Ning, N., Guo, H., Huang, L., Huang, X., & Zhao, Z. (2017). Polysaccharides in Grifola frondosa mushroom and their health promoting properties: a review. International Journal of Biological Macromolecules, 101, 910–921.CrossRefGoogle Scholar
  19. 19.
    Kubo, K., & Nanba, H. (1997). Anti-hyperliposis effect of maitake fruit body (Grifola frondosa). I. Biological & Pharmaceutical Bulletin, 20(7), 781–785.CrossRefGoogle Scholar
  20. 20.
    Hong, L., Xun, M., & Wutong, W. (2007). Anti-diabetic effect of an alpha-glucan from fruit body of maitake (Grifola frondosa) on KK-ay mice. The Journal of Pharmacy and Pharmacology, 59(4), 575–582.CrossRefGoogle Scholar
  21. 21.
    Chen, Z., Tang, Y., Liu, A., Jin, X., Zhu, J., & Lu, X. (2017). Oral administration of Grifola frondosa polysaccharides improves memory impairment in aged rats via antioxidant action. Molecular Nutrition & Food Research, 61(11).Google Scholar
  22. 22.
    Zhu, H., Sheng, K., Yan, E., Qiao, J., & Lv, F. (2012). Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. International Journal of Biological Macromolecules, 50(3), 840–843.CrossRefGoogle Scholar
  23. 23.
    Song, J., Wang, Y., Liu, C., Huang, Y., He, L., Cai, X., Lu, J., Liu, Y., & Wang, D. (2016). Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-kappaB pathway. Food & Function, 7(4), 2006–2015.CrossRefGoogle Scholar
  24. 24.
    Cui, H., Chen, Y., Wang, S., Kai, G., & Fang, Y. (2011). Isolation, partial characterisation and immunomodulatory activities of polysaccharide from Morchella esculenta. Journal of the Science of Food and Agriculture, 91(12), 2180–2185.Google Scholar
  25. 25.
    Dong, Y., Jing, T., Meng, Q., Liu, C., Hu, S., Ma, Y., Liu, Y., Lu, J., Cheng, Y., Wang, D., & Teng, L. (2014). Studies on the antidiabetic activities of Cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague-Dawley rats. BioMed Research International, 2014, 160980.Google Scholar
  26. 26.
    Wang, J., Song, J., Wang, D., Zhang, N., Lu, J., Meng, Q., Zhou, Y., Wang, N., Liu, Y., Wang, D., & Teng, L. (2016). The anti-membranous glomerulonephritic activity of purified polysaccharides from Irpex lacteus Fr. International Journal of Biological Macromolecules, 84, 87–93.CrossRefGoogle Scholar
  27. 27.
    Williams, M. E. (2005). Diabetic nephropathy: the proteinuria hypothesis. American Journal of Nephrology, 25(2), 77–94.CrossRefGoogle Scholar
  28. 28.
    Rubattu, S., Pagliaro, B., Pierelli, G., Santolamazza, C., Castro, S. D., Mennuni, S., & Volpe, M. (2014). Pathogenesis of target organ damage in hypertension: role of mitochondrial oxidative stress. International Journal of Molecular Sciences, 16(1), 823–839.CrossRefGoogle Scholar
  29. 29.
    Mahendran, G., Thamotharan, G., Sengottuvelu, S., & Bai, V. N. (2014). Anti-diabetic activity of Swertia corymbosa (Griseb.) Wight ex C.B. Clarke aerial parts extract in streptozotocin induced diabetic rats. Journal of Ethnopharmacology, 151(3), 1175–1183.CrossRefGoogle Scholar
  30. 30.
    Ellis, E. N., & Good, B. H. (1991). Prevention of glomerular basement membrane thickening by aminoguanidine in experimental diabetes mellitus. Metabolism, 40(10), 1016–1019.CrossRefGoogle Scholar
  31. 31.
    Hua, W., Huang, H. Z., Tan, L. T., Wan, J. M., Gui, H. B., Zhao, L., Ruan, X. Z., Chen, X. M., & Du, X. G. (2015). CD36 mediated fatty acid-induced podocyte apoptosis via oxidative stress. PLoS One, 10(5), e0127507.CrossRefGoogle Scholar
  32. 32.
    Rolo, A. P., & Palmeira, C. M. (2006). Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology, 212(2), 167–178.CrossRefGoogle Scholar
  33. 33.
    Tang, Z., Gao, H., Wang, S., Wen, S., & Qin, S. (2013). Hypolipidemic and antioxidant properties of a polysaccharide fraction from Enteromorpha prolifera. International Journal of Biological Macromolecules, 58, 186–189.CrossRefGoogle Scholar
  34. 34.
    Lo, C. S., Shi, Y. X., Chenier, I., Ghosh, A., Wu, C. H., Cailhier, J. F., Ethier, J., Lattouf, J. B., Filep, J. G., Ingelfinger, J. R., Zhang, S. L., & Chan, J. S. D. (2017). Heterogeneous nuclear ribonucleoprotein F stimulates Sirtuin-1 gene expression and attenuates nephropathy progression in diabetic mice. Diabetes, 66(7), 1964–1978.CrossRefGoogle Scholar
  35. 35.
    Sebai, H., Selmi, S., Rtibi, K., Souli, A., Gharbi, N., & Sakly, M. (2013). Lavender (Lavandula stoechas L.) essential oils attenuate hyperglycemia and protect against oxidative stress in alloxan-induced diabetic rats. Lipids in Health and Disease, 12(1), 189.CrossRefGoogle Scholar
  36. 36.
    Bertelli, R., Di Donato, A., Cioni, M., Grassi, F., Ikehata, M., Bonanni, A., Rastaldi, M. P., & Ghiggeri, G. M. (2014). LPS nephropathy in mice is ameliorated by IL-2 independently of regulatory T cells activity. PLoS One, 9(10), e111285.CrossRefGoogle Scholar
  37. 37.
    Peters, T., Bloch, W., Wickenhauser, C., Tawadros, S., Oreshkova, T., Kess, D., Krieg, T., Muller, W., & Scharffetter-Kochanek, K. (2006). Terminal B cell differentiation is skewed by deregulated interleukin-6 secretion in beta2 integrin-deficient mice. Journal of Leukocyte Biology, 80(3), 599–607.CrossRefGoogle Scholar
  38. 38.
    Eilenberg, W., Stojkovic, S., Piechota-Polanczyk, A., Kaider, A., Kozakowski, N., Weninger, W. J., Nanobachvili, J., Wojta, J., Huk, I., Demyanets, S., & Neumayer, C. (2017). Neutrophil gelatinase associated lipocalin (NGAL) is elevated in type 2 diabetics with carotid artery stenosis and reduced under metformin treatment. Cardiovascular Diabetology, 16(1), 98.CrossRefGoogle Scholar
  39. 39.
    Li, S., Zhang, Y., & Zhao, J. (2007). Preparation and suppressive effect of astragalus polysaccharide in glomerulonephritis rats. International Immunopharmacology, 7(1), 23–28.CrossRefGoogle Scholar
  40. 40.
    Zhang, S., Xin, H., Li, Y., Zhang, D., Shi, J., Yang, J., & Chen, X. (2013). Skimmin, a coumarin from Hydrangea paniculata, slows down the progression of membranous glomerulonephritis by anti-inflammatory effects and inhibiting immune complex deposition. Evidence-based complementary and alternative medicine. eCAM, 2013, 819296.Google Scholar
  41. 41.
    Pan, P., Wang, Y. J., Han, L., Liu, X., Zhao, M., & Yuan, Y. F. (2010). Effects of sodium houttuyfonate on expression of NF-kappaB and MCP-1 in membranous glomerulonephritis. Journal of Ethnopharmacology, 131(1), 203–209.CrossRefGoogle Scholar
  42. 42.
    Manna, P., Das, J., Ghosh, J., & Sil, P. C. (2010). Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IkappaBalpha/NF-kappaB, MAPKs, and mitochondria-dependent pathways: prophylactic role of arjunolic acid. Free Radical Biology & Medicine, 48(11), 1465–1484.CrossRefGoogle Scholar
  43. 43.
    Rashid, S., Nafees, S., Siddiqi, A., Vafa, A., Afzal, S. M., Parveen, R., Ali, N., Hasan, S. K., Barnwal, P., Shahid, A., & Sultana, S. (2017). Partial protection by 18beta glycrrhetinic acid against cisplatin induced oxidative intestinal damage in Wistar rats: possible role of NFkB and caspases. Pharmacological Reports : PR, 69(5), 1007–1013.CrossRefGoogle Scholar
  44. 44.
    Oh, S. W., Lee, Y. M., Kim, S., Chin, H. J., Chae, D. W., & Na, K. Y. (2014). Cobalt chloride attenuates oxidative stress and inflammation through NF-kappaB inhibition in human renal proximal tubular epithelial cells. Journal of Korean Medical Science, 29(Suppl 2), S139–S145.CrossRefGoogle Scholar
  45. 45.
    Methacanon, P., Madla, S., Kirtikara, K., & Prasitsil, M. (2005). Structural elucidation of bioactive fungi-derived polymers. Carbohydrate Polymers, 60(2), 199–203.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ling Kou
    • 1
  • Mingzhao Du
    • 1
  • Peijing Liu
    • 1
  • Baohai Zhang
    • 1
  • Yizhi Zhang
    • 2
  • Ping Yang
    • 1
  • Mengyuan Shang
    • 1
  • Xiaodong Wang
    • 1
  1. 1.Affiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangChina
  2. 2.Department of Neurology, the Second Hospital of Jilin UniversityJilin UniversityChangchunChina

Personalised recommendations