Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 28–46 | Cite as

Methane Production by Co-Digesting Vinasse and Whey in an AnSBBR: Effect of Mixture Ratio and Feed Strategy

  • Giovanna Lovato
  • Roberta Albanez
  • Marianne Triveloni
  • Suzana M. Ratusznei
  • José A. D. RodriguesEmail author
Article

Abstract

The most common approach to deal with vinasse (sugarcane stillage) is fertigation, but this technique compromises soil structure and surrounding water bodies. A possible solution is to transport vinasse to local cheese whey producers and perform the co-digestion of these wastewaters together, reducing their organic load and generating bioenergy. Therefore, this study investigated the application of an AnSBBR (anaerobic sequencing batch biofilm reactor) operated in batch and fed-batch mode, co-digesting vinasse and whey at 30 °C. The effect of influent composition and feeding strategy was assessed. In all conditions, the system achieved high organic matter removal (approximately 83%). Increasing the percentage of vinasse from 0 to 100% in the influent resulted in a decrease in methane productivity (76.3 to 51.1 molCH4 m−3 day−1) and yield (12.7 to 9.1 molCH4 kgCOD−1), but fed-batch mode operation improved reactor performance (73.0 molCH4 m−3 day−1 and 11.5 molCH4 kgCOD−1). From the kinetic metabolic model, it was possible to infer that, at the best condition, methane is produced in a similar way from the acetoclastic and hydrogenotrophic routes. A scheme of four parallel reactors with a volume of 16,950 m3 each was proposed in the scale-up estimation, with an energy recovery estimated in 28,745 MWh per month.

Keywords

Co-digestion Methane Modeling SBR Vinasse Whey 

Notes

Acknowledgments

This study was supported by the São Paulo Research Foundation (FAPESP: #2014/07692-8, #2015/06246-7, #2015/08403-2), the National Council for Scientific and Technological Development (CNPq: 443181/2016-0) and the Coordination for the Improvement of Higher Education Personnel (CAPES). We gratefully acknowledge Dr. Baltus C. Bonse’s revision.

Notation

%CH4 Molar fraction of methane in biogas (%)

%CO2 Molar fraction of carbon dioxide in biogas (%)

AnSBBR Anaerobic Sequencing Batch Biofilm Reactor

ASBR Anaerobic Sequencing Batch Reactor

ASOL Applied specific organic load (gCOD gTVS−1 day−1)

AVOL Applied volumetric organic load (gCOD L−1 day−1)

BA Bicarbonate alkalinity

CS Concentration of organic matter (gCOD L−1)

CBiomass concentration (gTVS L−1)

DAnF Downflow Anaerobic Filter

EtOH Ethanol

ɛST Organic matter removal efficiency for unfiltered samples (%)

ɛSF Organic matter removal efficiency for filtered samples (%)

H Hydrogen

HAc Acetic acid

HBu Butyric acid

HPr Propionic acid

M Methane

MPr Daily molar productivity of methane (molCH4 m−3 day−1)

MTVS Total biomass in the reactor in total volatile solids (gTVS)

YA Molar yield per applied organic load (mmolCH4 gCOD−1)

YR Molar yield per removed organic load (mmolCH4 gCOD-1)

RSOL Removed specific organic load (gCOD gTVS−1 day−1)

RVOL Removed volumetric organic load (gCOD L−1 day−1)

S Substrate (combination of whey and vinasse)

SMPr Daily specific molar productivity of methane (molCH4 kgTVS−1 day−1)

TVA Total volatile acids (gHAc L−1)

TVS Total volatile solids

UASB Upflow Anaerobic Sludge Blanket Reactor

VIA Volatile intermediate acids

Compliance with Ethical Standards

Conflict of Interest

The authors indicate no potential conflicts of interest.

References

  1. 1.
    Arimi, M. M., Knodel, J., Kiprop, A., Namango, S. S., Zhang, Y., & Geißen, S. U. (2015). Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass and Bioenergy., 75, 101–118.  https://doi.org/10.1016/j.biombioe.2015.02.011.CrossRefGoogle Scholar
  2. 2.
    Yang, H., & Li, S. (2013). Emergy analysis of cassava vinasse treatment. Process Safety and Environmental Protection, 91(6), 503–507.  https://doi.org/10.1016/j.psep.2013.01.003.CrossRefGoogle Scholar
  3. 3.
    Parnaudeau, V., Condom, N., Oliver, R., Cazevieille, P., & Recous, S. (2008). Vinasse organic matter quality and mineralization potential, as influenced by raw material, fermentation and concentration processes. Bioresource Technology, 99(6), 1553–1562.  https://doi.org/10.1016/j.biortech.2007.04.012.CrossRefGoogle Scholar
  4. 4.
    Siles, J. A., García-García, I., Martín, A., & Martín, M. A. (2011). Integrated ozonation and biomethanization treatments of vinasse derived from ethanol manufacturing. Journal of Hazardous Materials, 188(1–3), 247–253.  https://doi.org/10.1016/j.jhazmat.2011.01.096.CrossRefGoogle Scholar
  5. 5.
    España-Gamboa, E., Mijangos-Cortes, J., Barahona-Perez, L., Dominguez-Maldonado, J., Hernández-Zarate, G., & Alzate-Gaviria, L. (2011). Vinasses: characterization and treatments. Waste Management and Research, 29(12), 1235–1250.  https://doi.org/10.1177/0734242X10387313.CrossRefGoogle Scholar
  6. 6.
    Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427.  https://doi.org/10.1016/j.rser.2014.04.039.CrossRefGoogle Scholar
  7. 7.
    Shah, F. A., Mahmood, Q., Rashid, N., Pervez, A., Raja, I. A., & Shah, M. M. (2015). Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renewable and Sustainable Energy Reviews., 42, 627–642.  https://doi.org/10.1016/j.rser.2014.10.053.CrossRefGoogle Scholar
  8. 8.
    Albanez, R., Lovato, G., Zaiat, M., Ratusznei, S. M., & Rodrigues, J. A. D. (2016). Optimization, metabolic pathways modeling and scale-up estimative of an AnSBBR applied to biohydrogen production by co-digestion of vinasse and molasses. International Journal of Hydrogen Energy, 41(45), 20473–20484.  https://doi.org/10.1016/j.ijhydene.2016.08.145.CrossRefGoogle Scholar
  9. 9.
    Hublin, A., & Zelic, B. (2013). Modelling of the whey and cow manure co-digestion process. Waste Management & Research, 31(4), 353–360.  https://doi.org/10.1177/0734242X12455088.CrossRefGoogle Scholar
  10. 10.
    Dareioti, M. A., Dokianakis, S. N., Stamatelatou, K., Zafiri, C., & Kornaros, M. (2009). Biogas production from anaerobic co-digestion of agroindustrial wastewaters under mesophilic conditions in a two-stage process. Desalination, 248(1–3), 891–906.  https://doi.org/10.1016/j.desal.2008.10.010.CrossRefGoogle Scholar
  11. 11.
    Pant, D., & Adholeya, A. (2007). Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology., 98(12), 2321–2334.  https://doi.org/10.1016/j.biortech.2006.09.027.CrossRefGoogle Scholar
  12. 12.
    Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials., 163(1), 12–25.  https://doi.org/10.1016/j.jhazmat.2008.06.079.CrossRefGoogle Scholar
  13. 13.
    Fuess, L. T., & Garcia, M. L. (2015). Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production. Journal of Environmental Management, 162, 102–114.  https://doi.org/10.1016/j.jenvman.2015.07.046.CrossRefGoogle Scholar
  14. 14.
    Santa Cruz, L. F. L. (2011). Technical/economical/environmental feasibility of current forms of reclamation of vinasse to the sugarcane industry of Sao Paulo. University of São Paulo.Google Scholar
  15. 15.
    Carvalho, F., Prazeres, A. R., & Rivas, J. (2013). Cheese whey wastewater: characterization and treatment. Science of the Total Environment., 445-446, 385–396.  https://doi.org/10.1016/j.scitotenv.2012.12.038.CrossRefGoogle Scholar
  16. 16.
    Lovato, G., Ratusznei, S. M., Rodrigues, J. A. D., & Zaiat, M. (2016). Co-digestion of whey with glycerin in an AnSBBR for biomethane production. Applied Biochemistry and Biotechnology, 178(1), 126–143.  https://doi.org/10.1007/s12010-015-1863-0.CrossRefGoogle Scholar
  17. 17.
    Varesche, M. B., Zaiat, M., Vieira, L. G. T., Vazoller, R. F., & Foresti, E. (1997). Microbial colonization of poplyurethane foam matrices in horizontal-flow anaerobic immobilized-sludge reactor. Applied Microbiology and Biotechnology, 48(4), 534–538.  https://doi.org/10.1007/s002530051092.CrossRefGoogle Scholar
  18. 18.
    Zaiat, M., Cabral, A. K. A., & Foresti, E. (1996). Cell wash-out and external mass transfer resistance in horizontal-flow anaerobic immobilized sludge reactor. Water Research, 30(10), 2435–2439.  https://doi.org/10.1016/0043-1354(96)00108-X.CrossRefGoogle Scholar
  19. 19.
    Björnsson, L., Murto, M., & Mattiasson, B. (2000). Evaluation of parameters for monitoring an anaerobic co-digestion process. Applied Microbiology and Biotechnology, 54(6), 844–849.  https://doi.org/10.1007/s002530000471.CrossRefGoogle Scholar
  20. 20.
    APHA/AWWA/WEF (2012). Standard methods for the examination of water and wastewater. Standard Methods, 541. ISBN 9780875532356.Google Scholar
  21. 21.
    Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. Water, 58, 406–411.  https://doi.org/10.1016/S0262-1762(99)80122-9.Google Scholar
  22. 22.
    Rodrigues, J. A. D., Pinto, A. G., Ratusznei, S. M., Zaiat, M., & Gedraite, R. (2004). Enhancement of the performance of an anaerobic sequencing batch reactor treating low-strength wastewater through implementation of a variable stirring rate program. Brazilian Journal of Chemical Engineering, 21(3), 423–434.  https://doi.org/10.1590/S0104-66322004000300007.CrossRefGoogle Scholar
  23. 23.
    Bagley, D. M., & Brodkorb, T. S. (1999). Modeling microbial kinetics in an anaerobic sequencing batch reactor: model development and experimental validation. Water Environment Research, 71(7), 1320–1332.CrossRefGoogle Scholar
  24. 24.
    Albanez, R., Chiaranda, B. C., Ferreira, R. G., França, A. L. P., Honório, C. D., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2016). Anaerobic biological treatment of vinasse for environmental compliance and methane production. Applied Biochemistry and Biotechnology, 178(1), 21–43.  https://doi.org/10.1007/s12010-015-1856-z.CrossRefGoogle Scholar
  25. 25.
    Wijekoon, K. C., Visvanathan, C., & Abeynayaka, A. (2011). Effect of organic loading rate on VFA production, organic matter removal and microbial activity of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technology, 102(9), 5353–5360.  https://doi.org/10.1016/j.biortech.2010.12.081.CrossRefGoogle Scholar
  26. 26.
    Inanc, B., Matsui, S., & Ide, S. (1999). Propionic acid accumulation in anaerobic digestion of carbohydrates: an investigation on the role of hydrogen gas. In Water Science and Technology (Vol. 40, pp. 93–100).  https://doi.org/10.1016/S0273-1223(99)00368-6.
  27. 27.
    Heidrich, E. S., Curtis, T. P., & Dolfing, J. (2011). Determination of the internal chemical energy of wastewater. Environmental Science and Technology, 45(2), 827–832.  https://doi.org/10.1021/es103058w.CrossRefGoogle Scholar
  28. 28.
    Rodrigues, J. A. D., Oliveira, R. P., Ratusznei, S. M., Zaiat, M., & Foresti, E. (2011). AnSBBR applied to a personal care industry wastewater treatment: effects of fill time, volume treated per cycle, and organic load. Applied Biochemistry and Biotechnology, 163(1), 127–142.  https://doi.org/10.1007/s12010-010-9022-0.CrossRefGoogle Scholar
  29. 29.
    Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., Canto, C. S. A., & Zaiat, M. (2011). Effect of organic load on the performance and methane production of an AnSBBR treating effluent from biodiesel production. Applied Biochemistry and Biotechnology, 165(1), 347–368.  https://doi.org/10.1007/s12010-011-9255-6.CrossRefGoogle Scholar
  30. 30.
    Lovato, G., Bezerra, R. A., Rodrigues, J. A. D., Ratusznei, S. M., & Zaiat, M. (2012). Effect of feed strategy on methane production and performance of an AnSBBR treating effluent from biodiesel production. Applied Biochemistry and Biotechnology, 166(8), 2007–2029.  https://doi.org/10.1007/s12010-012-9627-6.CrossRefGoogle Scholar
  31. 31.
    Cheong, D.-Y., & Hansen, C. L. (2008). Effect of feeding strategy on the stability of anaerobic sequencing batch reactor responses to organic loading conditions. Bioresource Technology, 99(11), 5058–5068.  https://doi.org/10.1016/j.biortech.2007.08.084.CrossRefGoogle Scholar
  32. 32.
    Ferraz Júnior, A. D. N., Koyama, M. H., de Araújo Júnior, M. M., & Zaiat, M. (2016). Thermophilic anaerobic digestion of raw sugarcane vinasse. Renewable Energy, 89, 245–252.  https://doi.org/10.1016/j.renene.2015.11.064.CrossRefGoogle Scholar
  33. 33.
    España-Gamboa, E. I., Mijangos-Cortés, J. O., Hernández-Zárate, G., Maldonado, J. A. D., & Alzate-Gaviria, L. M. (2012). Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor. Biotechnology for Biofuels, 5(1), 82.  https://doi.org/10.1186/1754-6834-5-82.CrossRefGoogle Scholar
  34. 34.
    Mockaitis, G., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2006). Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity. Journal of Environmental Management, 79(2), 198–206.  https://doi.org/10.1016/j.jenvman.2005.07.001.CrossRefGoogle Scholar
  35. 35.
    Jo, Y., Kim, J., & Lee, C. (2016). Continuous treatment of dairy effluent in a downflow anaerobic filter packed with slag grains: reactor performance and kinetics. Journal of the Taiwan Institute of Chemical Engineers, 68, 147–152.  https://doi.org/10.1016/j.jtice.2016.08.021.CrossRefGoogle Scholar
  36. 36.
    Yan, J. Q., Lo, K. V., & Liao, P. H. (1989). Anaerobic digestion of cheese whey using up-flow anaerobic sludge blanket reactor. Biological Wastes, 27(4), 289–305.  https://doi.org/10.1016/0269-7483(89)90010-4.CrossRefGoogle Scholar
  37. 37.
    Lovato, G., Albanez, R., Lima, D. M. F., Bravo, I. S. M., Almeida, W. A., Ratuznei, S. M., & Rodrigues, J. A. D. (2015). Application and environmental compliance of anaerobic sequencing batch reactors applied to hydrogen/methane bioenergy production. Wastewater treatment: processes, management strategies and environmental/health impacts (1st ed.). Hauppauge: Nova Science Publishers. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84956732534&partnerID=40&md5=851bf2743af17dc471febba40b7e96e2.
  38. 38.
    Energy Research Company (Empresa de Pesquisa Energética - EPE) (2017). BRASIL—consumption and number of consumers. Retrieved October 9, 2017, from http://www.epe.gov.br
  39. 39.
    Federal Government of Brazil (2015). The Brazilian National Agency of Petroleum. Retrieved December 1, 2017, from http://www.anp.gov.br/

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mauá School of EngineeringMauá Institute of Technology (EEM/IMT)São Caetano do SulBrazil

Personalised recommendations