Applied Biochemistry and Biotechnology

, Volume 187, Issue 2, pp 649–661 | Cite as

Enhancement of Tryptic Digestibility of Milk β-Lactoglobulin Through Treatment with Recombinant Rice Glutathione/Thioredoxin and NADPH Thioredoxin Reductase/Thioredoxin Systems

  • Tahere Shahriari-Farfani
  • Azar ShahpiriEmail author
  • Asghar Taheri-Kafrani


β-Lactoglobulin (BLG), a member of lipocalin family, is one of the major bovine milk allergens. This protein exists as a dimer of two identical subunits and contains two intramolecular disulfide bonds that are responsible for its resistance to trypsin digestion and allergenicity. This study aimed to evaluate the effect of reduction of disulfide bonds of BLG with different rice thioredoxins (Trxs) on its digestibility and allergenicity. Therefore, the active recombinant forms of three rice Trx isoforms (OsTrx1, OsTrx20, and OsTrx23) and one rice NADPH-dependent Trx reductase isoform (OsNTRB) were expressed in Escherichia coli. Based on SDS-PAGE, HPLC analysis, and competitive ELISA, the reduction of disulfide bonds of BLG with OsNTRB/OsTrx23, OsNTRB/OsTrx1, GSH/OsTrx1, or GSH/OsTrx20 increased its trypsin digestibility and reduced its immunoreactivity. The finding of this study opens new insights for application of plant Trxs in the improvement of food protein digestibility. Especially, the use of OsTrx20 and OsTrx1 are more cost-effective than E. coli and animal Trxs due to their reduction by GSH and no need to NADPH and Trx reductase as mediator enzyme.


Milk β-Lactoglobulin Allergenicity Digestibility Thioredoxin NADPH-dependent thioredoxin reductase Glutathione 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Sampson, H. (2004). Update on food allergy. Journal of Allergy and Clinical Immunology, 113(5), 805–819.CrossRefGoogle Scholar
  2. 2.
    Rytkonen, J. (2006). Effect of heat denaturation of bovine milk betalactoglobulin on its epithelial transport and allergenicity. Acta Universitatis Ouluensis Series D, 883, 17–18.Google Scholar
  3. 3.
    Saarinen, K. M., Juntunen-Backman, K., Järvenpää, A. L., Kuitunen, P., Lope, L., Renlund, M., Siivola, M., & Savilahti, E. (1999). Supplementary feeding in maternity hospitals and the risk of cow’s milk allergy: a prospective study of 6209 infants. Journal of Allergy and Clinical Immunology, 104(2), 457–461.CrossRefGoogle Scholar
  4. 4.
    Docena, G. H., Fernandez, R., Chirdo, F. G., & Fossati, C. A. (1996). Identification of casein as the major allergenic and antigenic protein of cow’s milk. Allergy, 51(6), 412–416.CrossRefGoogle Scholar
  5. 5.
    Savilahti, E., & Kuitunen, M. (1992). Allergenicity of cow milk proteins. Journal of Pediatrics, 121(5), S12–S20.CrossRefGoogle Scholar
  6. 6.
    Perez, M. D., & Calvo, M. (1995). Interaction of B-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein. Journal of Dairy Science, 78(5), 978–988.CrossRefGoogle Scholar
  7. 7.
    Flower, D. R. (1996). The lipocalin protein family: structure and function. Biochemical Journal, 318(1), 1–14.CrossRefGoogle Scholar
  8. 8.
    Fogolari, F., Ragona, L., Zetta, L., Romagnoli, S., De Kruif, K. G., & Molinari, H. (1998). Monomeric bovine beta-lactoglobulin adopts a beta barrel fold at pH 2. FEBS Letters., 436(2), 149–154.CrossRefGoogle Scholar
  9. 9.
    Hambling, S. G., McAlpine, A. S., Sawyer, L., & Fox, P. (1992). β-Lactoglobulin. Adv. Dairy Chemistry. 1 Protein 2, 141–190.Google Scholar
  10. 10.
    Rahaman, T., Vasiljevic, T., & Ramchandran, L. (2016). Digestibility and antigenicity of β-lactoglobulin as affected by heat, pH and applied shear. Food Chemistry, 217, 517–523.CrossRefGoogle Scholar
  11. 11.
    Zhong, J., Luo, S. H., Liu, C. H., & Liu, W. (2014). Steady-state kinetics of tryptic hydrolysis of β-lactoglobulin after dynamic high-pressure microfluidization treatment in relation to antigenicity. Journal European Food Research and Technology, 239(3), 525–531.CrossRefGoogle Scholar
  12. 12.
    Lowe, E. K., Anema, S. G., Bienvenue, A., Boland, M. J., Creamer, L. K., & Jiménez-Flores, R. (2004). Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine β-Lactoglobulin and κ-casein. Journal of Agriculture and Food Chemistry, 52(25), 7669–7680.CrossRefGoogle Scholar
  13. 13.
    Zhao, D., T Le, T., Nielsen, S. D., & Larsen, L. B. (2017). Effect of storage on lactase-treated B-casein and B-lactoglobulin with respect to bitter peptide formation and subsequent in vitro digestibility. Journal of Agricultural and Food Chemistry, 65(38), 8409–8417.CrossRefGoogle Scholar
  14. 14.
    Del Val, G., Buchanan, B. B., Yee, B. C., Lozano, R. M., Ermel, R. W., & Frick, O. L. (1997). Production of hypoallergenic, hyperdigestible milk by a new biotechnology. In: XVI International Congress of Allergology and Clinical Immunology, (p. 26).Google Scholar
  15. 15.
    Del Val, G., Yee, B. C., Lozano, R. M., Buchanan, B. B., Ermel, R. W., Lee, Y. M., & Frick, O. L. (1999). Thioredoxin treatment increases digestibility and lowers allergenicity of milk. Journal of Allergy and Clinical Immunology, 103(4), 690–697.CrossRefGoogle Scholar
  16. 16.
    Gelhaye, E., Rouhier, N., & Jacquot, J. P. (2004). The thioredoxin h system of higher plants. Plant Physiology and Biochemistry, 42(4), 265–271.CrossRefGoogle Scholar
  17. 17.
    Meyer, Y., Siala, W., Bashandy, T., Riondet, C., Vignols, F., & Reichheld, J. P. (2008). Glutaredoxins and thioredoxins in plants. Biochimica et Biophysica Acta, 1783(4), 589–600.CrossRefGoogle Scholar
  18. 18.
    Reichheld, J. P., Meyer, E., Khafif, M., Bonnard, G., & Meyer, Y. (2005). AtNTRB is the major mitochondrial thioredoxin reductase in Arabidopsis thaliana. FEBS Letters, 579(2), 337–342.CrossRefGoogle Scholar
  19. 19.
    Bréhélin, C., Laloi, C., Setterdahl, A. T., Knaff, D. B., & Meyer, Y. (2004). Cytosolic, mitochondrial thioredoxins and thioredoxin reductases in Arabidopsis Thaliana. Photosynthesis Research, 79(3), 295–304.CrossRefGoogle Scholar
  20. 20.
    Meyer, Y., Vignols, F., & Reichheld, J. P. (2002). Classification of plant thioredoxins by sequence similarity and intron position. Methods in Enzymology, 347, 394–402.CrossRefGoogle Scholar
  21. 21.
    Nuruzzaman, M., Gupta, M., Zhang, C., Wang, L., Xie, W., Xiong, L., Zhang, Q., & Lian, X. (2008). Sequence and expression analysis of the thioredoxin protein gene family in rice. Molecular Genetics and Genomics, 280(2), 139–151.CrossRefGoogle Scholar
  22. 22.
    Serrato, A. J., Pérez-Ruiz, J. M., Spínola, M. C., & Cejudo, F. J. (2004). A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. Journal of Biological Chemistry, 279(42), 43821–43827.CrossRefGoogle Scholar
  23. 23.
    Papzan, Z., & Shahpiri, A. (2012). Cloning, heterologous expression and characterization of three thioredoxin h isoforms (OsTrx1, OsTrx20 and OsTrx23) from rice. Plant Omics, 5, 238–243.Google Scholar
  24. 24.
    Eslampanah, H., & Shahpiri, A. (2012). Molecular cloning and characterization of two isoforms of cytoplasmic/mitochondrial type NADPH-dependent thioredoxin reductase from rice (‘Oryza sativa’ L. ssp. ‘indica’). Australian Journal of Crop Science, 6, 1045–1050.Google Scholar
  25. 25.
    Shaykholeslam Esfahani, E., & Shahpiri, A. (2015). Thioredoxin h isoforms from rice are differentially reduced by NADPH/thioredoxin or GSH/glutaredoxin systems. International Journal of Biological Macromolecules, 74, 243–248.CrossRefGoogle Scholar
  26. 26.
    Ellman, G. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.CrossRefGoogle Scholar
  27. 27.
    Chibani, K., Wingsle, G., Jacquot, J.-P., Gelhaye, E., & Rouhier, N. (2011). Biochemical properties of poplar thioredoxin z. FEBS Letters, 34569, 1–6.Google Scholar
  28. 28.
    Gelhaye, E., Rouhier, N., Gérard, J., Jolivet, Y., Gualberto, J., Navrot, N., Ohlsson, P. I., Wingsle, G., Hirasawa, M., & Knaff, D. B. (2004). A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. PNAS, 101(40), 14545–14550.CrossRefGoogle Scholar
  29. 29.
    Buchanan, B. B., & Balmer, Y. (2005). Redox regulation: a broading horizon. Annual Review of Plant Biology, 56(1), 187–220.CrossRefGoogle Scholar
  30. 30.
    Faris, R. J., Wang, H., & Wang, T. (2008). Improving digestibility of soy flour by reducing disulfide bonds with thioredoxin. Journal of Agricultural and Food Chemistry, 56(16), 7146–7150.CrossRefGoogle Scholar
  31. 31.
    Niemi, M., Jylhä, S., Laukkanen, M. L., Söderlund, H., Kiljunen, S. M., Kallio, J. M., Hakulinen, N., Haahtela, T., Takkinen, K., & Rouvinen, J. (2007). Molecular interaction between a recombinant IgE antibody and the ß-lactoglobulin allergen. Structure, 15(11), 1413–1421.CrossRefGoogle Scholar
  32. 32.
    Fuquay, J. W., Fox, P. F., & McSweeney, P. L. (2011). Encyclopedia of Dairy Sciences (2nd ed.). Cambridge: Academic.Google Scholar
  33. 33.
    Stanley, J., & Bannon, G. (1999). Biochemistry of food allergens. Clinical Reviews in Allergy & Immunology, 17, 279–291.CrossRefGoogle Scholar
  34. 34.
    Song, C. Y., Chen, W. L., Yang, M. C., Huang, J. P., & Mao, S. J. (2005). Epitope mapping of a monoclonal antibody specific to bovine dry milk: involvement of residues 66–76 of strand D in thermal denatured beta-lactoglobulin. Journal of Biology and Chemistry, 280(5), 3574–3582.CrossRefGoogle Scholar
  35. 35.
    Takagi, K., Teshima, R., Okunuki, H., & Sawada, J. (2003). Comparative study of in vitro digestibility of food proteins and effect of preheating on the digestion. Biological and Pharmaceutical Bulletin, 26(7), 969–973.CrossRefGoogle Scholar
  36. 36.
    Peram, M. R., Loveday, S. M., & Ye, A. (2013). In vitro gastric digestion of heat-induced aggregates of β-lactoglobulin. Journal of Dairy Science, 96(1), 63–74.CrossRefGoogle Scholar
  37. 37.
    Buchanan, B. B., Adamidi, C., Lozano, R. M., Yee, B. C., Momma, M., Kobrehel, K., Ermel, R., & Frick, O. L. (1997). Thioredoxin-linked mitigation of allergic responses to wheat. Production National Academy of Science, 94(10), 5372–7377.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Tahere Shahriari-Farfani
    • 1
  • Azar Shahpiri
    • 1
    Email author
  • Asghar Taheri-Kafrani
    • 2
  1. 1.Department of Biotechnology, College of AgricultureIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Biotechnology, Faculty of advanced Sciences and TechnologiesUniversity of IsfahanIsfahanIran

Personalised recommendations