Advertisement

Applied Biochemistry and Biotechnology

, Volume 187, Issue 1, pp 253–265 | Cite as

Protein Production Through Microbial Conversion of Rice Straw by Multi-Strain Fermentation

  • Jinru Jia
  • Huayou ChenEmail author
  • Bangguo Wu
  • Fengjie Cui
  • Hua Fang
  • Hongcheng Wang
  • Zhong Ni
Article
  • 100 Downloads

Abstract

Multi-strain mixed fermentation can provide a relatively complete lignocellulosic enzyme system compared with single-strain fermentation. This study was firstly to screen strains which have a strong ability to hydrolyse rice straw (RS) enzymatically and enrich true protein (TP). Then, the conditions in the process of SSF, including the optimum inoculum size of mixed strains, inoculation ratio, and different inoculation time of N. crassa 14–8, were optimized. The experimental results showed that the highest TP content could be obtained by using N. crassa 14–8, C. utilis, and P. chrysosporium as mixed strains, and 5 mM Mn2+ and 50 mM veratryl alcohol were used as inducers of lignin peroxidase (LiP) to improve the efficiency of enzymatic hydrolysis. When N. crassa 14–8 was inoculated 1 day later than P. chrysosporium, the total inoculum size was 10%, and the optimum ratio of N. crassa 14–8 to P. chrysosporium was 1:2, the maximum TP yield (8.89%) was obtained, with 123.37% of its increase rate. This work proposed a technique with potential application in large-scale feedstuff protein conversion.

Keywords

Neurospora crassa Multi-strain fermentation Solid-state fermentation True protein Rice straw 

Notes

Acknowledgements

This work was supported by the Key R&D Program of Jiangsu Province (Modern Agriculture), China (BE2017355); the Agricultural Sci-Tech Self-Innovation Program of Jiangsu Province, CX(17)3044, China; the Open Funding Project of National Key Laboratory of Biochemical Engineering; and Jiangsu Special Research and Development Grant for Northern Jiangsu Area, China (SZ-YC2017001).

References

  1. 1.
    Abu, O. A., Tewe, O. O., Losel, D. M., & Onifade, A. A. (2000). Changes in lipid, fatty acids and protein composition of sweet potato (Ipomoea batatas) after solid-state fungal fermentation. Bioresource Technology, 72(2), 189–192.CrossRefGoogle Scholar
  2. 2.
    Aggelopoulos, T., Katsieris, K., Bekatorou, A., Pandey, A., Banat, I. M., & Koutinas, A. A. (2014). Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chemistry, 145, 710–716.CrossRefGoogle Scholar
  3. 3.
    Asgher, M., Ahmed, N., & Iqbal, H. M. N. (2011). Hyperproductivity of extracellular enzymes from indigenous white rot fungi (P. chrysosporium IBL-03) by utilizing agro-wastes. Bioresources, 6, 4454–4467.Google Scholar
  4. 4.
    Bader, J., Mast-Gerlach, E., Popovi, M. K., Bajpai, R., & Stahl, U. (2010). Relevance of microbial coculture fermentations in biotechnology. Journal of Applied Microbiology, 109(2), 371–387.CrossRefGoogle Scholar
  5. 5.
    Bak, J. S., Ko, J. K., Choi, I. G., Park, Y. C., Seo, J. H., & Kim, K. H. (2009). Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw. Biotechnology and Bioengineering, 104(3), 471–482.CrossRefGoogle Scholar
  6. 6.
    Bonugli-Santos, R. C., Durrant, L. R., Silva, M. D., & Sette, L. D. (2010). Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme and Microbial Technology, 46(1), 32–37.CrossRefGoogle Scholar
  7. 7.
    Chen, S. L. (2010). Biological pretreatment of lignocellulosics: Potential, progress and challenges. Biofuels, 1(1), 177–199.CrossRefGoogle Scholar
  8. 8.
    Danesh, A., Mamo, G., & Mattiasson, B. (2011). Production of haloduracin by Bacillus halodurans using solid-state fermentation. Biotechnology Letters, 33(7), 1339–1344.CrossRefGoogle Scholar
  9. 9.
    Dias, A. A., & Rui, M. B. (2003). In vivo and laccase-catalysed decolourization of xenobiotic azo dyes by a basidiomycetous fungus: Characterization of its ligninolytic system. World Journal of Microbiology and Biotechnology, 19(9), 969–975.CrossRefGoogle Scholar
  10. 10.
    Dobozi, M. S., Szakács, G., & Bruschi, C. V. (1992). Xylanase activity of Phanerochaete chrysosporium. Applied and Environmental Microbiology, 58(11), 3466–3471.Google Scholar
  11. 11.
    Eberhart, B. M., Beck, R. S., & Goolsby, K. M. (1977). Cellulase of Neurospora crassa. Journal of Bacteriology, 130(1), 181–186.Google Scholar
  12. 12.
    Elshafei, A. M. (1990). Cellulase and hemicellulase formation by fungi using corn Stover as the substrate. Biological Wastes, 32(3), 209–218.CrossRefGoogle Scholar
  13. 13.
    Froehner, S. C., & Eriksson, K. E. (1974). Induction of Neurospora crassa laccase with protein synthesis inhibitors. Journal of Bacteriology, 120(1), 450–457.Google Scholar
  14. 14.
    Garrido, S. M., Kitamoto, N., Watanabe, A., Shintani, T., & Gomi, K. (2012). Functional analysis of FarA transcription factor in the regulation of the genes encoding lipolytic enzymes and hydrophobic surface binding protein for the degradation of biodegradable plastics in Aspergillus oryzae. Journal of Bioscience and Bioengineering, 113(5), 549–555.CrossRefGoogle Scholar
  15. 15.
    Garrote, G., Dominguez, H., & Parajo, J. C. (2002). Autohydrolysis of corncob: Study of non-isothermal operation for xylooligosaccharide production. Journal of Food Engineering, 52(3), 211–218.CrossRefGoogle Scholar
  16. 16.
    Gassara, F., Brar, S. K., Tyagi, R. D., John, R. P., Verma, M., & Valero, J. R. (2011). Parameter optimization for production of ligninolytic enzymes using agro-industrial wastes by response surface method. Biotechnology and Bioprocess Engineering, 16(2), 343–351.CrossRefGoogle Scholar
  17. 17.
    Ghose, T. K. (2009). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.CrossRefGoogle Scholar
  18. 18.
    Huang, D. L., Zeng, G. M., Feng, C. L., Shuang, H., Zhao, M. H., Cui, L., Yu, Z., Jiang, X. Y., & Liu, H. L. (2010). Mycelial growth and solid-state fermentation of lignocellulosic waste by white-rot fungus Phanerochaete chrysosporium under lead stress. Chemosphere, 81(9), 1091–1097.CrossRefGoogle Scholar
  19. 19.
    Huang, X., Wang, D., Liu, C., Hu, M., Qu, Y., & Gao, P. (2003). The roles of veratryl alcohol and nonionic surfactant in the oxidation of phenolic compounds by lignin peroxidase. Biochemical and Biophysical Research Communications, 311(2), 491–494.CrossRefGoogle Scholar
  20. 20.
    Irfan, M., Nazir, M. I., Nadeem, M., Gulsher, M., Syed, Q., & Baig, S. (2011). Optimization of process parameters for the production of single cell biomass of Candida utilis in solid state fermentation. American-Eurasian Journal of Agricultural and Environmental Sciences, 10, 264–270.Google Scholar
  21. 21.
    Kirk, T. K., & Farrell, R. L. (1987). Enzymatic "combustion": The microbial degradation of lignin. Annual Review of Microbiology, 41(1), 465–501.CrossRefGoogle Scholar
  22. 22.
    Lio, J. Y., & Wang, T. (2012). 75.Solid-state fermentation of soybean and corn processing coproducts for potential feed improvement. Journal of Agricultural and Food Chemistry, 60(31), 7702–7709.CrossRefGoogle Scholar
  23. 23.
    Mahadevan, P. R., & Eberhart, B. (1964). The Beta-glucosidase system of Neurospora Crassa. Ii. Purification and characterization of aryl beta-glucosidase. Archives of Biochemistry and Biophysics, 108(1), 22–29.CrossRefGoogle Scholar
  24. 24.
    Mishra, C., Keskar, S., & Rao, M. (1984). Production and properties of extracellular Endoxylanase from Neurospora crassa. Applied and Environmental Microbiology, 48(1), 224–228.Google Scholar
  25. 25.
    Perez, J., & Jeffries, T. W. (1993). Role of organic acid chelators in manganese regulation of lignin degradation by Phanerochaete chrysosporium. Applied Biochemistry and Biotechnology, 39-40(1), 227–238.CrossRefGoogle Scholar
  26. 26.
    Rajoka, M. I., Kiani, M. A. T., Khan, S., Awan, M. S., & Hashmi, A. S. (2004). Production of single cell protein from rice polishings using Candida utilis. World Journal of Microbiology and Biotechnology, 20(3), 297–301.CrossRefGoogle Scholar
  27. 27.
    Saha, B. C. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30(5), 279–291.CrossRefGoogle Scholar
  28. 28.
    Sanchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194.CrossRefGoogle Scholar
  29. 29.
    Santos, M. M. D., & Rosa, A. S. D. (2004). Thermal denaturation: Is solid-state fermentation really a good technology for the production of enzymes? Bioresource Technology, 93(3), 261–268.CrossRefGoogle Scholar
  30. 30.
    Shi, J., Sharma-Shivappa, R. R., Chinn, M., & Howell, N. (2009). Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy, 33(1), 88–96.CrossRefGoogle Scholar
  31. 31.
    Singh, P., Sulaiman, O., Hashim, R., Peng, L. C., & Singh, R. P. (2013). Evaluating biopulping as an alternative application on oil palm trunk using the white-rot fungus Trametes versicolor. International Biodeterioration and Biodegradation, 82, 96–103.CrossRefGoogle Scholar
  32. 32.
    SKC, C. (2010). Protein Analysis (2nd ed.). USA: Aspen Publishers Inc.Google Scholar
  33. 33.
    Talaeipour, M., Hemmasi, A. H., Kasmani, J. E., Mirshokraie, S. A., & Khademieslam, H. (2010). Effects of fungal treatment on structural and chemical features of hornbeam chips. Bioresources, 5, 477–487.Google Scholar
  34. 34.
    Ten, H. R., & Teunissen, P. J. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chemical Reviews, 101, 3397.CrossRefGoogle Scholar
  35. 35.
    Van Soest, P. J. (1963). Use of detergents in the analysis of fibrous feeds. 1. Preparation of fiber residues of low nitrogen content. Journal of the Association of Official Agricultural Chemists, 46, 825–829.Google Scholar
  36. 36.
    Xiao, L., Yang, L. Y., Zhang, Y., Gu, Y. F., Jiang, L. J., & Qin, B. Q. (2009). Solid state fermentation of aquatic macrophytes for crude protein extraction. Ecological Engineering, 35(11), 1668–1676.CrossRefGoogle Scholar
  37. 37.
    Zhao, L., Cao, G. L., Wang, A. J., Ren, H. Y., Dong, D., Liu, Z. N., Guan, X. Y., Xu, C. J., & Ren, N. Q. (2012). Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresource Technology, 114, 365–369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jinru Jia
    • 1
    • 2
  • Huayou Chen
    • 1
    • 3
    Email author
  • Bangguo Wu
    • 1
  • Fengjie Cui
    • 1
    • 4
  • Hua Fang
    • 4
  • Hongcheng Wang
    • 1
  • Zhong Ni
    • 1
  1. 1.Institute of Life SciencesJiangsu UniversityZhenjiangP. R. China
  2. 2.Translational Research InstituteHenan Provincial People’s HospitalZhengzhouP. R. China
  3. 3.National Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP. R. China
  4. 4.Jiangsu Yancheng Yuanyao Biotechnology Co., Ltd.YanchengP. R. China

Personalised recommendations