Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 692–711 | Cite as

Isolation and Evaluation of New Antagonist Bacillus Strains for the Control of Pathogenic and Mycotoxigenic Fungi of Fig Orchards

  • Özlem Öztopuz
  • Gülseren Pekin
  • Ro Dong Park
  • Rengin Eltem
Article
  • 172 Downloads

Abstracts

Bacillus is an antagonistic bacteria that shows high effectiveness against different phytopathogenic fungi and produces various lytic enzymes, such as chitosanase, chitinase, protease, and gluconase. The aim of this study is to determine Bacillus spp. for lytic enzyme production and to evaluate the antifungal effects of the selected strains for biocontrol of mycotoxigenic and phytopathogenic fungi. A total of 92 endospore-forming bacterial isolates from the 24 fig orchard soil samples were screened for chitosanase production, and six best chitosanolytic isolates were selected to determine chitinase, protease, and N-acetyl-β-hexosaminidase activity and molecularly identified. The antagonistic activities of six Bacillus strains against Aspergillus niger EGE-K-213, Aspergillus foetidus EGE-K-211, Aspergillus ochraceus EGE-K-217, and Fusarium solani KCTC 6328 were evaluated. Fungal spore germination inhibition and biomass inhibition activities were also measured against A. niger EGE-K-213. The results demonstrated that Bacillus mojavensis EGE-B-5.2i and Bacillus thuringiensis EGE-B-14.1i were more efficient antifungal agents against A. niger EGE-K-213. B. mojavensis EGE-B-5.2i has shown maximum inhibition of the biomass (30.4%), and B. thuringiensis EGE-B-14.1i has shown maximum inhibition of spore germination (33.1%) at 12 h. This is the first study reporting the potential of antagonist Bacillus strains as biocontrol agents against mycotoxigenic fungi of fig orchads.

Keywords

Lytic enzymes Bacillus Biocontrol Mycotoxigenic fungi 

Notes

Funding Information

This work was supported by the Research Project Fund of TUBITAK (104O339).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sharma, R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biological Control, 50(3), 205–221.CrossRefGoogle Scholar
  2. 2.
    Rodrigues, P., Venâncio, A., & Lima, N. (2012). Mycobiota and mycotoxins of almonds and chestnuts with special reference to aflatoxins. Food Research International, 48(1), 76–90.CrossRefGoogle Scholar
  3. 3.
    Eltem, R., Taskin, E., & Pazarbasi, S. (2009). Biodiversity and flora of microfungi from sultana-type vineyard soil in Turkey. Fresenius Environmental Bulletin, 18, 82–86.Google Scholar
  4. 4.
    Zinedine, A., & Mañes, J. (2009). Occurrence and legislation of mycotoxins in food and feed from Morocco. Food Control, 20(4), 334–344.CrossRefGoogle Scholar
  5. 5.
    Aksoy, U., Eltem, R., Meyvaci, K., Altindisli, A., & Karabat, S. (2007). Five-year survey of ochratoxin A in processed sultanas from Turkey. Food Additives and Contaminants, 24(3), 292–296.CrossRefGoogle Scholar
  6. 6.
    Zain, M. E. (2011). Impact of mycotoxins on humans and animals. Journal of Saudi Chemical Society, 15(2), 129–144.CrossRefGoogle Scholar
  7. 7.
    Georgiadou, M., Dimou, A., & Yanniotis, S. (2012). Aflatoxin contamination in pistachio nuts: a farm to storage study. Food Control, 26(2), 580–586.CrossRefGoogle Scholar
  8. 8.
    Imperato, R., Campone, L., Piccinelli, A. L., Veneziano, A., & Rastrelli, L. (2011). Survey of aflatoxins and ochratoxin a contamination in food products imported in Italy. Food Control, 22(12), 1905–1910.CrossRefGoogle Scholar
  9. 9.
    Trucksess, M., & Scott, P. (2008). Mycotoxins in botanicals and dried fruits: a review. Food Additives and Contaminants, 25(2), 181–192.CrossRefGoogle Scholar
  10. 10.
    Heperkan, D., Güler, F. K., & Oktay, H. (2012). Mycoflora and natural occurrence of aflatoxin, cyclopiazonic acid, fumonisin and ochratoxin A in dried figs. Food Additives & Contaminants: Part A, 29(2), 277–286.CrossRefGoogle Scholar
  11. 11.
    Meyvaci, K., Altindisli, A., Aksoy, U., Eltem, R., Turgut, H., Arasiler, Z., & Kartal, N. (2005). Ochratoxin A in sultanas from Turkey I: survey of unprocessed sultanas from vineyards and packing-houses. Food Additives and Contaminants, 22(11), 1138–1143.CrossRefGoogle Scholar
  12. 12.
    Heperkan, D., Moretti, A., Dikmen, C. D. and Logrieco, A. F. (2012). Toxigenic fungi and mycotoxin associated with figs in the Mediterranean area. Phytopathologia Mediterranea, 119–130.Google Scholar
  13. 13.
    Özay, G., & Alperden, I. (1991). Aflatoxin and ochratoxin—a contamination of dried figs (Ficus carina L.) from the 1988 crop. Mycotoxin Research, 7(2), 85–91.CrossRefGoogle Scholar
  14. 14.
    Karbancıoğlu-Güler, F., & Heperkan, D. (2008). Natural occurrence of ochratoxin A in dried figs. Analytica Chimica Acta, 617(1-2), 32–36.CrossRefGoogle Scholar
  15. 15.
    Salako, A., Sholeye, O., & Dairo, O. (2011). Beyond pest control: a closer look at the health implication of pesticides usage. Journal of Toxicology and Environmental Health Sciences, 4, 37–42.Google Scholar
  16. 16.
    Zorlugenç, B., Zorlugenç, F. K., Öztekin, S., & Evliya, I. B. (2008). The influence of gaseous ozone and ozonated water on microbial flora and degradation of aflatoxin B1 in dried figs. Food and Chemical Toxicology, 46(12), 3593–3597.CrossRefGoogle Scholar
  17. 17.
    Freiman, Z. E., Rodov, V., Yablovitz, Z., Horev, B., & Flaishman, M. A. (2012). Preharvest application of 1-methylcyclopropene inhibits ripening and improves keeping quality of ‘Brown Turkey’figs (Ficus carica L.). Scientia Horticulturae, 138, 266–272.CrossRefGoogle Scholar
  18. 18.
    Karabulut, O. A., Ilhan, K., Arslan, U., & Vardar, C. (2009). Evaluation of the use of chlorine dioxide by fogging for decreasing postharvest decay of fig. Postharvest Biology and Technology, 52(3), 313–315.CrossRefGoogle Scholar
  19. 19.
    Choi, Y. J., Kim, E. J., Piao, Z., Yun, Y. C., & Shin, Y. C. (2004). Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Applied and Environmental Microbiology, 70(8), 4522–4531.CrossRefGoogle Scholar
  20. 20.
    Taskin, E., Eltem, R., da Silva, E. S., & de Souza, J. V. B. (2008). Screening of Aspergillus strains isolated from vineyards for pectinase production. Journal of Food Agriculture and Environment, 6, 5–7.Google Scholar
  21. 21.
    Zhang, B., Dong, C., Shang, Q., Cong, Y., Kong, W., & Li, P. (2013). Purification and partial characterization of bacillomycin L produced by Bacillus amyloliquefaciens K103 from lemon. Applied Biochemistry and Biotechnology, 171(8), 2262–2272.CrossRefGoogle Scholar
  22. 22.
    Chen, Q., Liu, B., Wang, J., Che, J., Liu, G., & Guan, X. (2017). Antifungal lipopeptides produced by Bacillus sp. FJAT-14262 isolated from rhizosphere soil of the medicinal plant Anoectochilus roxburghii. Applied Biochemistry and Biotechnology, 182(1), 155–167.CrossRefGoogle Scholar
  23. 23.
    Bahadır, P. S., Liaqat, F., & Eltem, R. (2018). Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turkish Journal of Botany, 42(2), 183–196.CrossRefGoogle Scholar
  24. 24.
    Claus, D. (1986). Genus Bacillus Cohn 1872, 174. Bergey's manual of systematic bacteriology, 2, 1105–1139.Google Scholar
  25. 25.
    Cheng, Q., Li, H., Merdek, K., & Park, J. T. (2000). Molecular characterization of the β-N-Acetylglucosaminidase of Escherichia coli and its role in cell wall recycling. Journal of Bacteriology, 182(17), 4836–4840.CrossRefGoogle Scholar
  26. 26.
    Sri, R., Tanuwidjaja, F., Rukayadi, Y., Suwanto, A., Suhartono, M. T., Hwang, J. K., & Pyun, Y. R. (2004). Study of thermostable chitinase enzymes from Indonesian Bacillus K29-14. Journal of Microbiology and Biotechnology, 14, 647–652.Google Scholar
  27. 27.
    Chen, Y.-L., Su, C.-K., & Chiang, B.-H. (2006). Optimization of reversed micellar extraction of chitosanases produced by Bacillus cereus. Process Biochemistry, 41(4), 752–758.CrossRefGoogle Scholar
  28. 28.
    Jo, Y.-Y., Jo, K.-J., Jin, Y.-L., Kim, K.-Y., Shim, J.-H., Kim, Y.-W., & Park, R.-D. (2003). Characterization and kinetics of 45 kDa chitosanase from Bacillus sp. P16. Bioscience, Biotechnology, and Biochemistry, 67(9), 1875–1882.CrossRefGoogle Scholar
  29. 29.
    Zhu, X.-F., Wu, X.-Y., & Dai, Y. (2003). Fermentation conditions and properties of a chitosanase from Acinetobacter sp. C-17. Bioscience, Biotechnology, and Biochemistry, 67(2), 284–290.CrossRefGoogle Scholar
  30. 30.
    Miller, G. (1959). Use of DNS reagent for the measurement of reducing sugar. Analytical Chemistry, 31(3), 426–428.CrossRefGoogle Scholar
  31. 31.
    Imoto, T., & Yagishita, K. (1971). A simple activity measurement of lysozyme. Agricultural and Biological Chemistry, 35(7), 1154–1156.CrossRefGoogle Scholar
  32. 32.
    Shibata, H., & Yagi, T. (1996). Rate assay of N-acetyl-β-D-hexosaminidase with 4-nitrophenyl N-acetyl-β-D-glucosaminide as an artificial substrate. Clinica Chimica Acta, 251(1), 53–64.CrossRefGoogle Scholar
  33. 33.
    Chun, D.-S., Kang, D.-K., & Kim, H.-K. (2002). Isolation and enzyme production of a neutral protease-producing strain, Bacillus sp. DS-1. Korean Journal of Microbiology and Biotechnology, 30, 346–351.Google Scholar
  34. 34.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254.CrossRefGoogle Scholar
  35. 35.
    Chang, W.-T., Chen, Y.-C., & Jao, C.-L. (2007). Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresource Technology, 98(6), 1224–1230.CrossRefGoogle Scholar
  36. 36.
    Walker, R., Powell, A., & Seddon, B. (1998). Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species. Journal of Applied Microbiology, 84(5), 791–801.CrossRefGoogle Scholar
  37. 37.
    Gao, X.-A., Ju, W.-T., Jung, W.-J., & Park, R.-D. (2008). Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydrate Polymers, 72(3), 513–520.CrossRefGoogle Scholar
  38. 38.
    Driss, F., Kallassy-Awad, M., Zouari, N., & Jaoua, S. (2005). Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. Journal of Applied Microbiology, 99(4), 945–953.CrossRefGoogle Scholar
  39. 39.
    Brar, S. K., Verma, M., Tyagi, R., Valéro, J., & Surampalli, R. (2007). Bacillus thuringiensis fermentation of hydrolyzed sludge—rheology and formulation studies. Chemosphere, 67(4), 674–683.CrossRefGoogle Scholar
  40. 40.
    Slámová, K., Bojarová, P., Petrásková, L., & Křen, V. (2010). β-N-Acetylhexosaminidase: what’s in a name …? Biotechnology Advances, 28(6), 682–693.CrossRefGoogle Scholar
  41. 41.
    Kamil, Z., Saleh, M., & Moustafa, S. (2007). Isolation and identification of rhizosphere soil chitinolytic bacteria and their potential in antifungal biocontrol. Global Journal of Molecular Science, 2, 57–66.Google Scholar
  42. 42.
    Kudan, S., & Pichyangkura, R. (2009). Purification and characterization of thermostable chitinase from Bacillus licheniformis SK-1. Applied Biochemistry and Biotechnology, 157(1), 23–35.CrossRefGoogle Scholar
  43. 43.
    Sakai, K., Narihara, M., Kasama, Y., Wakayama, M., & Moriguchi, M. (1994). Purification and characterization of thermostable beta-N-acetylhexosaminidase of Bacillus stearothermophilus CH-4 isolated from chitin-containing compost. Applied and Environmental Microbiology, 60(8), 2911–2915.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Aslim, B., Sağlam, N., & Beyatli, Y. (2002). Determination of some properties of Bacillus isolated from soil. Turkish Journal of Biology, 26, 41–48.Google Scholar
  45. 45.
    Tyagi, R., Foko, V. S., Barnabe, S., Vidyarthi, A., Valero, J., & Surampalli, R. (2002). Simultaneous production of biopesticide and alkaline proteases by Bacillus thuringiensis using sewage sludge as a raw material. Water Science and Technology, 46(10), 247–254.CrossRefGoogle Scholar
  46. 46.
    Reyes-Ramírez, A., Escudero-Abarca, B., Aguilar-Uscanga, G., Hayward-Jones, P. and Barboza-Corona, J. E. (2004). Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. Journal of Food Science, 69.CrossRefGoogle Scholar
  47. 47.
    Gomaa, E. Z. (2012). Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in antifungal biocontrol. The Journal of Microbiology, 50(1), 103–111.CrossRefGoogle Scholar
  48. 48.
    Doster, M., Michailides, T., & Morgan, D. (1996). Aspergillus species and mycotoxins in figs from California orchards. Plant Disease, 80(5), 484–489.CrossRefGoogle Scholar
  49. 49.
    López, A., & Alippi, A. (2010). Enterotoxigenic gene profiles of Bacillus cereus and Bacillus megaterium isolates recovered from honey. Revista Argentina de Microbiologia, 42(3), 216–225.PubMedGoogle Scholar
  50. 50.
    Yánez-Mendizábal, V., Usall, J., Viñas, I., Casals, C., Marín, S., Solsona, C., & Teixidó, N. (2011). Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocontrol Science and Technology, 21(4), 409–426.CrossRefGoogle Scholar
  51. 51.
    Şenyuva, H. Z., Gilbert, J., & Öztürkoğlu, Ş. (2008). Rapid analysis of fungal cultures and dried figs for secondary metabolites by LC/TOF-MS. Analytica Chimica Acta, 617(1-2), 97–106.CrossRefGoogle Scholar
  52. 52.
    Bacon, C. W., & Hinton, D. M. (2007). Potential for control of seedling blight of wheat caused by Fusarium graminearum and related species using the bacterial endophyte Bacillus mojavensis. Biocontrol Science and Technology, 17(1), 81–94.CrossRefGoogle Scholar
  53. 53.
    Snook, M. E., Mitchell, T., Hinton, D. M., & Bacon, C. W. (2009). Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. Journal of Agricultural and Food Chemistry, 57(10), 4287–4292.CrossRefGoogle Scholar
  54. 54.
    Liaqat, F., & Eltem, R. (2018). Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydrate Polymers, 184, 243–259.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of BiophysicÇanakkale 18 Mart UniversityÇanakkaleTurkey
  2. 2.Faculty of Engineering, Department of BioengineeringEge UniversityİzmirTurkey
  3. 3.Department of Agricultural BiochemistryChonnam National UniversityGwangjuSouth Korea

Personalised recommendations