Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 1, pp 217–232 | Cite as

Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis

  • Xuefeng Wu
  • Hongli Yao
  • Qing Liu
  • Zhi Zheng
  • Lili Cao
  • Dongdong Mu
  • Hualin Wang
  • Shaotong Jiang
  • Xingjiang Li
Article
  • 296 Downloads

Abstract

The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.

Keywords

Acetic acid fermentation Ethanol respiratory chain Acetobacter pasteurianus JST-S Environmental stress Metabolic flux analysis 

Notes

Funding Information

This work was supported by National Natural Science Foundation of China (31601465), Project of Hefei University of Technology (JZ2017YYPY0247/JZ2016YYPY0041), and Anhui Science and Technology Project (15CZZ03100).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yamada, Y., & Yukphan, P. (2008). Genera and species in acetic acid bacteria. International Journal of Food Microbiology, 125(1), 15–24.CrossRefPubMedGoogle Scholar
  2. 2.
    Sengun, I. Y., & Karabiyikli, S. (2011). Importance of acetic acid bacteria in food industry. Food Control, 22(5), 647–656.CrossRefGoogle Scholar
  3. 3.
    Qi, Z. L., Yang, H. L., Xia, X. L., Wang, W., & Yu, X. B. (2014). High strength vinegar fermentation by Acetobacter pasteurianus via enhancing alcohol respiratory chain. Biotechnol. Bioproc. E., 19(2), 289–297.CrossRefGoogle Scholar
  4. 4.
    Zheng, Y., Zhang, K. P., Su, G. Y., Han, Q., Shen, Y. B., & Wang, M. (2015). The evolutionary response of alcohol dehydrogenase and aldehyde dehydrogenases of Acetobacter pasteurianus CGMCC 3089 to ethanol adaptation. Food Science and Biotechnology, 24(1), 133–140.CrossRefGoogle Scholar
  5. 5.
    Zhu, X. M., Xia, X. L., Yang, H. L., & Wang, W. (2013). Study on the key enzymes of ethanol oxidation and acetic acid production in Acetobacter pasteurianus HN 1.01. Sci. Technol. Food Ind, 34(2), 167–170.Google Scholar
  6. 6.
    Wang, B., Shao, Y. C., Tao, C., Chen, W. P., & Chen, F. S. (2015). Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics. Sci. Rep-uk., 5, 18330.CrossRefGoogle Scholar
  7. 7.
    Xia, K., Li, Y. D., Sun, J., & Liang, X. L. (2016). Comparative genomics of Acetobacter pasteurianus Ab3, an acetic acid producing strain isolated from Chinese traditional rice vinegar meiguichu. PLoS One, 11(9), e0162172.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kanchanarach, W., Theeragool, G., Yakushi, T., Toyama, H., Adachi, O., & Matsushita, K. (2010). Characterization of thermotolerant Acetobacter pasteurianus strains and their quinoprotein alcohol dehydrogenases. Appl. Microbiol. Biot., 85(3), 741–751.CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Bai, Y., Li, S. D., Wang, C., Xu, N., & Hu, Y. (2016). Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei. World J. Microbiol. Biot, 32(1), 14.CrossRefGoogle Scholar
  10. 10.
    Saeki, A., Theeragool, G., Matsushita, K., Toyama, H., Lotong, N., & Adachi, O. (1997). Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Bioscience Biotechnology and Biochemistry, 61(1), 138–145.CrossRefGoogle Scholar
  11. 11.
    Moonmangmee, D., Adachi, O., Ano, Y., Shinagawa, E., Toyama, H., Theeragool, G., Lotong, N., & Matsusltita, K. (2000). Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Bioscience Biotechnology and Biochemistry, 64(11), 2306–2315.CrossRefGoogle Scholar
  12. 12.
    Soemphol, W., Deeraksa, A., Matsutani, M., Yakushi, T., Toyama, H., Adachi, O., Yamada, M., & Matasusttita, K. (2011). Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU 1100. Bioscience Biotechnology and Biochemistry, 75(10), 1921–1928.CrossRefGoogle Scholar
  13. 13.
    Lee, K. W., Shim, J. M., Kim, G. M., Shin, J. H., & Kim, J. H. (2015). Isolation and characterization of Acetobacter species from a traditionally prepared vinegar. Microbiol. Biotechnol. Lett., 43(3), 219–226.CrossRefGoogle Scholar
  14. 14.
    Chinnawirotpisan, P., Theeragool, G., Limtong, S., Toyama, H., Adachi, O. O., & Matsushita, K. (2003). Quinoprotein alcohol dehydrogenase is involved in catabolic acetate production, while NAD-dependent alcohol dehydrogenase in ethanol assimilation in Acetobacter pasteurianus SKU 1108. Journal of Bioscience and Bioengineering, 96(6), 564–571.CrossRefPubMedGoogle Scholar
  15. 15.
    Andrés-Barrao, C., Saad, M. M., Chappuis, M. L., Boffa, M., Perret, X., Pérez, R. O., & Barja, F. (2012). Proteome analysis of Acetobacter pasteurianus during acetic acid fermentation. Journal of Proteomics, 75(6), 1701–1717.CrossRefPubMedGoogle Scholar
  16. 16.
    Trcek, J., Toyama, H., Czuba, J., Misiewicz, A., & Matsushita, K. (2006). Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl. Microbiol. Biot., 70(3), 366–373.CrossRefGoogle Scholar
  17. 17.
    Quintero, Y., Poblet, M., Guillamón, J. M., & Mas, A. (2009). Quantification of the expression of reference and alcohol dehydrogenase genes of some acetic acid bacteria in different growth conditions. Journal of Applied Microbiology, 106(2), 666–674.CrossRefPubMedGoogle Scholar
  18. 18.
    Hong, S. H., Moon, S. Y., & Lee, S. Y. (2003). Prediction of maximum yields of metabolites and optimal pathways for their production by metabolic flux analysis. Journal of Microbiology and Biotechnology, 13(4), 571–577.Google Scholar
  19. 19.
    Nakano, S., & Fukaya, M. (2008). Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. International Journal of Food Microbiology, 125(1), 54–59.CrossRefPubMedGoogle Scholar
  20. 20.
    Illeghems, K., De, V. L., & Weckx, S. (2013). Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics, 14(1), 526.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Adler, P., Frey, L. J., Berger, A., Bolten, C. J., Hansen, C. E., & Wittmann, C. (2014). The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation-simulating conditions. Appl. Environ. Microb., 80(15), 4702–4716.CrossRefGoogle Scholar
  22. 22.
    Schilling, C. H., Edwards, J. S., Letscher, D., & Palsson, B. Ø. (2000). Combining pathway analysis with flux balance analysis for the comprehensive study of metabolic systems. Biotechnology and Bioengineering, 71(4), 286–306.CrossRefPubMedGoogle Scholar
  23. 23.
    Dandekar, T., Fieselmann, A., Majeed, S., & Ahmed, Z. (2014). Software applications toward quantitative metabolic flux analysis and modeling. Briefings in Bioinformatics, 15(1), 91–107.CrossRefPubMedGoogle Scholar
  24. 24.
    Stephanopoulos, G. (1999). Metabolic fluxes and metabolic engineering. Metabolic Engineering, 1(1), 1–11.CrossRefPubMedGoogle Scholar
  25. 25.
    Di, H., Jia, X., Wen, J., Wang, G., Yu, G., Caiyin, Q., & Chen, Y. L. (2011). Metabolic flux analysis and principal nodes identification for daptomycin production improvement by Streptomyces roseosporus. Applied Biochemistry and Biotechnology, 165(7–8), 1725–1739.Google Scholar
  26. 26.
    Wu, X. F., Liu, Q., Deng, Y. D., Li, J. H., Chen, X. J., Gu, Y. Z., Lv, X. J., Zheng, Z., Jiang, S. T., & Li, X. J. (2017). Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC 40205 mutant. Bioresource Technology, 241, 25–34.CrossRefPubMedGoogle Scholar
  27. 27.
    Saeki, A., Matsushita, K., Takeno, S., Taniguchi, M., Toyama, H., Theeragool, G., Lotong, N., & Adachi, O. (1999). Enzymes responsible for acetate oxidation by acetic acid bacteria. Bioscience Biotechnology and Biochemistry, 63(12), 2102–2109.CrossRefGoogle Scholar
  28. 28.
    Fregapane, G., Rubiofernandez, H., & Desamparados, S. M. (2001). Influence of fermentation temperature on semi-continuous acetification for wine vinegar production. European Food Research and Technology, 213(1), 62–66.CrossRefGoogle Scholar
  29. 29.
    Qi, Z. L., Wang, W., Yang, H. L., Xia, X. L., & Yu, X. B. (2014). Mutation of Acetobacter pasteurianus by UV irradiation under acidic stress for high-acidity vinegar fermentation. International Journal of Food Science and Technology, 49(2), 468–476.CrossRefGoogle Scholar
  30. 30.
    Krusong, W., Kerdpiboon, S., Jindaprasert, A., Yaiyen, S., Pornpukdeewatana, S., & Tantratian, S. (2015). Influence of calcium chloride in the high temperature acetification by strain Acetobacter aceti WK for vinegar. Journal of Applied Microbiology, 119(5), 1291–1300.CrossRefPubMedGoogle Scholar
  31. 31.
    Huzar, E., & Wodnicka, A. (2013). Determination of ethanol content in medicated syrups by static headspace gas chromatography. Acta Poloniae Pharmaceutica, 70(1), 41–49.PubMedGoogle Scholar
  32. 32.
    Matsushita, K., Kobayashi, Y., Mizuguchi, M., Toyama, H., Adachi, O., Sakamoto, K., & Miyoshi, H. (2008). A tightly bound quinone functions in the ubiquinone reaction sites of quinoprotein alcohol dehydrogenase of an acetic acid bacterium, Gluconobacter suboxydans. Bioscience Biotechnology and Biochemistry, 72(10), 2723–2731.CrossRefGoogle Scholar
  33. 33.
    Wood, W. A., Fetting, R. A., & Hertlein, B. C. (1962). Gluconic dehydrogenase from pseudomonas fluorescens. Method. Enzymol., 5, 287–291.CrossRefGoogle Scholar
  34. 34.
    Dulley, J. R., & Grieve, P. A. (1975). A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Analytical Biochemistry, 64(1), 136–141.CrossRefPubMedGoogle Scholar
  35. 35.
    Vialle, J., Kolosky, M., & Rocca, J. L. (1981). Determination of betaine in sugar and wine by liquid chromatography. Journal of Chromatography. A, 204(204), 429–435.CrossRefGoogle Scholar
  36. 36.
    Shah, M. M., & Cheryan, M. (1995). Improvement of productivity in acetic acid fermentation with clostridium thermoaceticum. Applied Biochemistry and Biotechnology, 51(1), 413–422.CrossRefGoogle Scholar
  37. 37.
    Sanarico, D., Motta, S., Bertolini, L., & Antonelli, A. (2003). HPLC determination of organic acids in traditional balsamic vinegar of Reggio Emilia. J. Liq. Chromatogr. R. T., 26(13), 2177–2187.CrossRefGoogle Scholar
  38. 38.
    Li, X. J., Liu, Y., Yang, Y., Zhang, H., Wang, H. L., Wu, Y., Zhang, M., Sun, T., Cheng, J. S., Wu, X. F., Pan, L. J., Jiang, S. T., & Wu, H. W. (2014). High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnol. Bioproc. E., 19(3), 478–492.CrossRefGoogle Scholar
  39. 39.
    Ehrenreich, A., & Liebl, W. (2017). The genomes of acetic acid bacteria. In A. Ehrenreich, & W. Liebl (eds.), Biology of microorganisms on grapes, in must and in wine. Berlin: Springer Berlin Heidelberg, pp. 469–494.Google Scholar
  40. 40.
    Wallenius, J., Maaheimo, H., & Eerikäinen, T. (2016). Carbon 13-metabolic flux analysis derived constraint-based metabolic modelling of Clostridium acetobutylicum in stressed chemostat conditions. Bioresource Technology, 219, 378–386.CrossRefPubMedGoogle Scholar
  41. 41.
    Varma, A., & Palsson, B. O. (1994). Metabolic flux balancing: basic concepts, scientific and practical use. Nature Biotechnology, 12(10), 994–998.CrossRefGoogle Scholar
  42. 42.
    Li, X. J., Zheng, Z., Wei, Z. J., Jiang, S. T., Pan, L. J., & Weng, S. B. (2009). Screening, breeding and metabolic modulating of a strain producing succinic acid with corn straw hydrolyte. World J. Microbiol. Biot., 25(4), 667–677.CrossRefGoogle Scholar
  43. 43.
    Dandekar, T., Fieselmann, A., Majeed, S., & Ahmed, Z. (2014). Software applications toward quantitative metabolic flux analysis and modeling. Briefings in Bioinformatics, 15(1), 91–107.CrossRefPubMedGoogle Scholar
  44. 44.
    Saeki, A., Matsushita, K. T. H., Theeragool, G., Lotong, N. A. O., & Taniguchi, M. (1997). Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Bioscience Biotechnology and Biochemistry, 61(2), 317–323.CrossRefGoogle Scholar
  45. 45.
    Longacre, A., Reimers, J. M., Gannon, J. E., & Wright, B. E. (1997). Flux analysis of glucose metabolism in rhizopus oryzae for the purpose of increasing lactate yields. Fungal Genetics and Biology, 21(1), 30–39.CrossRefPubMedGoogle Scholar
  46. 46.
    McKinlay, J. B., Shachar-Hill, Y., Zeikus, J. G., & Vieille, C. (2007). Determining Actinobacillus succino genes metabolic pathways and fluxes by NMR and GC-MS analysis of 13C-labeled metabolic product isotopomers. Metabolic Engineering, 9(2), 177–192.CrossRefPubMedGoogle Scholar
  47. 47.
    Antoniewicz, M. R. (2015). Methods and advances in metabolic flux analysis: a mini-review. J. Ind. Microbiol. Biot., 42(3), 317–325.CrossRefGoogle Scholar
  48. 48.
    Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y., & Nielsen, J. (2015). Microbial acetyl-CoA metabolism and metabolic engineering. Metabolic Engineering, 28, 28–42.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xuefeng Wu
    • 1
    • 2
  • Hongli Yao
    • 1
  • Qing Liu
    • 1
  • Zhi Zheng
    • 1
    • 2
  • Lili Cao
    • 1
    • 2
  • Dongdong Mu
    • 1
  • Hualin Wang
    • 1
    • 2
  • Shaotong Jiang
    • 1
    • 2
  • Xingjiang Li
    • 1
    • 2
  1. 1.School of Food Science and EngineeringHefei University of TechnologyHefei CityPeople’s Republic of China
  2. 2.Key Laboratory for Agricultural Products Processing of Anhui ProvinceHefeiPeople’s Republic of China

Personalised recommendations