Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 1, pp 199–216 | Cite as

Heavy Metal Stress and Its Consequences on Exopolysaccharide (EPS)-Producing Pantoea agglomerans

  • Bhavana V. Mohite
  • Sunil H. Koli
  • Satish V. Patil
Article
  • 217 Downloads

Abstract

Currently, the heavy metal pollution is of grave concern, and the part of microorganism for metal bioremediation should take into account as an efficient and economic strategy. On this framework, the heavy metal stress consequences on exopolysaccharide (EPS)-producing agricultural isolate, Pantoea agglomerans, were studied. The EPS production is a protective response to stress to survive and grow in the metal-contaminated environment. P. agglomerans show tolerance and mucoid growth in the presence of heavy metals, i.e., mercury, copper, silver, arsenic, lead, chromium, and cadmium. EDX first confirmed the metal accumulation and further, FTIR determined the functional groups involved in metal binding. The ICP-AES identified the location of cell-bound and intracellular metal accumulation. Metal deposition on cell surface has released more Ca2+. The effect on bacterial morphology investigated with SEM and TEM revealed the sites of metal accumulation, as well as possible structural changes. Each heavy metal caused distinct change and accumulated on cell-bound EPS with some intracellular deposits. The metal stress caused a decrease in total protein content and increased in total carbohydrate with a boost in EPS. Thus, the performance of P. agglomerans under metal stress indicated a potential candidate for metal bioremediation.

Graphical Abstract

Keywords

Metal tolerance Calcium ions Bioremediation Accumulation Biosorption Biopolymer 

Notes

Acknowledgement

This work was supported by the Science and Engineering Research Board (SERB) under the Start Up Research Grant (Young Scientist) to BVM (File No. YSS/2015/001722). Authors are also thankful to UGC-SAP and DST-FIST for providing financial support to the School of Life Sciences. BVM thankful to SAIF, AIIMS, New Delhi for providing TEM facility.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

Supplementary material

12010_2018_2727_MOESM1_ESM.docx (419 kb)
ESM 1 (DOCX 419 kb)

References

  1. 1.
    Mclaughlin, M. J., Parke, D. R., & Clarke, J. M. (1999). Metals and micronutrients—food safety issues. Field Crops Research, 60(1-2), 143–163.CrossRefGoogle Scholar
  2. 2.
    Rasmussen, L. D., & Sørensen, S. J. (1998). The effect of long term exposure to mercury on the bacterial community in marine sediment. Current Microbiology, 36(5), 291–297.CrossRefPubMedGoogle Scholar
  3. 3.
    Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51(6), 730–750.CrossRefPubMedGoogle Scholar
  4. 4.
    Jackson, T. A., West, M. M., & Leppard, G. G. (2011). Accumulation and partitioning of heavy metals by bacterial cells and associated colloidal minerals, with alteration, neoformation, and selective adsorption of minerals by bacteria, in metal-polluted lake sediment. Geomicrobiology Journal, 28(1), 23–55.CrossRefGoogle Scholar
  5. 5.
    Gadd, G. M. (1992). Molecular biology and biotechnology of microbial interactions with organic and inorganic heavy metal compounds. In R. A. Herbert & R. J. Sharp (Eds.), Molecular biology and biotechnology of extremophiles (pp. 225–257). Glasgow: Blackie and Sons.CrossRefGoogle Scholar
  6. 6.
    Silver, S., & Phung, L. T. (1996). Bacterial heavy metal resistance: new surprises. Annual Review of Microbiology, 50(1), 753–789.CrossRefPubMedGoogle Scholar
  7. 7.
    Ates, O. (2015). Systems biology of microbial exopolysaccharides production. Frontiers in Bioengineering and Biotechnology, 3(200), 1–16.Google Scholar
  8. 8.
    Dogan, N. M., Doganli, G. A., Dogan, G., & Bozkaya, O. (2015). Characterization of extracellular polysaccharides (EPS) produced by thermal bacillus and determination of environmental conditions affecting exopolysaccharide production. International Journal of Environmental Research, 9, 1107–1116.Google Scholar
  9. 9.
    Cefalo, A. D. (2012). Characterization of the function and interaction of proteins involved in exopolysaccharide synthesis in Streptococcus thermophilus, Streptococcus iniae, and Lactococcus lactis subsp. cremoris. Utah State University.Google Scholar
  10. 10.
    Comte, S., Guibaud, G., & Baudu, M. (2008). Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. Journal of Hazardous Materials, 151(1), 185–193.CrossRefPubMedGoogle Scholar
  11. 11.
    Watanabe, M., Kawahara, K., Sasaki, K., & Noparatnaraporn, N. (2003). Biosorption of cadmium ions using a photosynthetic bacterium, Rhodobacter sphaeroides S and a marine photosynthetic bacterium, Rhodovulum sp. and their biosorption kinetics. Journal of Bioscience and Bioengineering, 95(4), 374–378.CrossRefPubMedGoogle Scholar
  12. 12.
    Iyer, A., Mody, K., & Jha, B. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin, 50(3), 340–343.CrossRefPubMedGoogle Scholar
  13. 13.
    Ozdemir, G., Ozturk, T., Ceyhan, N., Isler, R., & Cosar, T. (2003). Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresource Technology, 90(1), 71–74.CrossRefPubMedGoogle Scholar
  14. 14.
    Sulaymon, A. H., Ebrahim, S. E., & Mohammed-Ridha, M. J. (2013). Equilibrium, kinetic, and thermodynamic biosorption of Pb (II), Cr (III), and Cd (II) ions by dead anaerobic biomass from synthetic wastewater. Environmental Science and Pollution Research, 20(1), 175–187.CrossRefPubMedGoogle Scholar
  15. 15.
    Mohite, B. V., Koli, S. H., Narkhede, C. P., Patil, S. N., & Patil, S. V. (2017). Prospective of microbial exopolysaccharide for heavy metal exclusion. Applied Biochemistry and Biotechnology, 183(2), 582–600.CrossRefPubMedGoogle Scholar
  16. 16.
    Guibaud, G., Comte, S., Bordas, F., Dupuy, S., & Baudu, M. (2005). Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere, 59(5), 629–638.CrossRefPubMedGoogle Scholar
  17. 17.
    Omar, N. B., Merroun, M. L., Peñalver, J. M., & Muñoz, M. T. (1997). Comparative heavy metal biosorption study of brewery yeast and Myxococcus xanthus biomass. Chemosphere, 35(10), 2277–2283.CrossRefPubMedGoogle Scholar
  18. 18.
    Lau, T. C., Wu, X. A., Chua, H., Qian, P. Y., & Wong, P. K. (2005). Effect of exopolysaccharides on the adsorption of metal ions by Pseudomonas sp. CU-1. Water Science and Technology, 52, 63–68.CrossRefGoogle Scholar
  19. 19.
    Pal, A., & Paul, A. K. (2008). Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian Journal of Microbiology, 48(1), 49–64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Święciło, A., & Zych-Wężyk, I. (2013). Bacterial stress response as an adaptation to life in a soil environment. Polish Journal of Environmental Studies, 22, 1577–1587.Google Scholar
  21. 21.
    Yazdi, S., & Ardekani, A. M. (2012). Bacterial aggregation and biofilm formation in a vortical flow. Biomicrofluidics, 6(4), 044114.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Leigh, J. A., & Coplin, D. L. (1992). Exopolysaccharides in plant-bacterial interactions. Annual Review of Microbiology, 46(1), 307–346.CrossRefPubMedGoogle Scholar
  23. 23.
    Gadd, G. M. (1990). Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46(8), 834–840.CrossRefGoogle Scholar
  24. 24.
    Srinath, T., Verma, T., Ramteke, P. W., & Garg, S. K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48(4), 427–435.CrossRefPubMedGoogle Scholar
  25. 25.
    del Carmen Vargas-García, M., Lópezm, M. J., Suárez-Estrella, F., & Moreno, J. (2012). Compost as a source of microbial isolates for the bioremediation of heavy metals: in vitro selection. Science of the Total Environment, 431, 62–67.CrossRefGoogle Scholar
  26. 26.
    Omoike, A., & Chorover, J. (2006). Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochimica et Cosmochimica Acta, 70(4), 827–838.CrossRefGoogle Scholar
  27. 27.
    Benson, H. J. (1994). Microbiological applications. In C. Wan (Ed.), Laboratory manual in general microbiology. Dubuque: Brown Publishers.Google Scholar
  28. 28.
    Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J. P., & Raoult, D. (2000). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. Journal of Clinical Microbiology, 38(10), 3623–3630.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ozturk, S., Aslim, B., & Ugur, A. (2008). Chromium (VI) resistance and extracellular polysaccharide (EPS) synthesis by Pseudomonas, Stenotrophomonas and Methylobacterium strains. ISIJ International, 48(11), 1654–1658.CrossRefGoogle Scholar
  31. 31.
    Harley, J. P., & Prescott, L. M. (1989). Laboratory exercises in microbiology, 5th edn. (pp. 32–34). New York: McGraw-Hill Companies.Google Scholar
  32. 32.
    Golding, C. G., Lamboo, L. L., Beniac, D. R., & Booth, T. F. (2016). The scanning electron microscope in microbiology and diagnosis of infectious disease. Scientific Reports, 6(26516), 1–8.Google Scholar
  33. 33.
    Al-Momani, F. A., Massadeh, A. M., & Hadad, Y. A. (2007). Uptake of zinc and copper by halophilic bacteria isolated from the Dead Sea Shore, Jordan. Biological Trace Element Research, 115(3), 291–300.CrossRefPubMedGoogle Scholar
  34. 34.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.PubMedGoogle Scholar
  35. 35.
    DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.CrossRefGoogle Scholar
  36. 36.
    Bitton, G., & Freihofer, V. (1978). Influence of extracellular polysaccharides on the toxicity of copper and cadmium towards Klebsiella aerogenes. Microbial Ecology, 4, 119–125.CrossRefGoogle Scholar
  37. 37.
    Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews, 27(2–3), 313–339.CrossRefPubMedGoogle Scholar
  38. 38.
    Czaczyk, K., & Myszka, K. (2007). Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies, 16(6), 799–806.Google Scholar
  39. 39.
    Iyer, A., Mody, K., & Jha, B. (2004). Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloacae. Marine Pollution Bulletin, 49(11-12), 974–977.CrossRefPubMedGoogle Scholar
  40. 40.
    Kılıç, N. K., & Dönmez, G. (2008). Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. Journal of Hazardous Materials, 154(1-3), 1019–1024.CrossRefPubMedGoogle Scholar
  41. 41.
    Breierová, E., Hromádková, Z., Stratilová, E., Sasinková, V., & Ebringerová, A. (2005). Effect of salt stress on the production and properties of extracellular polysaccharides produced by Cryptococcus laurentii. Zeitschrift für Naturforschung C, 60, 444–450.CrossRefGoogle Scholar
  42. 42.
    Silver, S. (1991). Bacterial heavy metal resistance systems and possibility of bioremediation. In Biotechnology: bridging research and applications (pp. 265–287). Netherlands: Springer.CrossRefGoogle Scholar
  43. 43.
    Ozdemir, G., Ceyhan, N., Ozturk, T., Akirmak, F., & Cosar, T. (2004). Biosorption of chromium (VI), cadmium (II) and copper (II) by Pantoea sp. TEM18. Chemical Engineering Journal, 102(3), 249–253.CrossRefGoogle Scholar
  44. 44.
    Liu, H., & Fang, H. H. (2002). Characterization of electrostatic binding sites of extracellular polymers by linear programming analysis of titration data. Biotechnology and Bioengineering, 80(7), 806–811.CrossRefPubMedGoogle Scholar
  45. 45.
    Sun, P., Hui, C., Bai, N., Yang, S., Wan, L., Zhang, Q., & Zhao, Y. (2015). Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal. Scientific Reports, 5(1), 17465.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Čopíková, J., Barros, A. S., Šmídová, I., Černá, M., Teixeira, D. H., Delgadillo, I., Synytsya, A., & Coimbra, M. A. (2006). Influence of hydration of food additive polysaccharides on FT-IR spectra distinction. Carbohydrate Polymers, 63(3), 355–359.CrossRefGoogle Scholar
  47. 47.
    Davis, T. A., Llanes, F., Volesky, B., & Mucci, A. (2003). Metal selectivity of Sargassum spp. and their alginates in relation to their α-L-guluronic acid content and conformation. Environmental Science & Technology, 37(2), 261–267.CrossRefGoogle Scholar
  48. 48.
    Deschatre, M., Ghillebaert, F., Guezennec, J., & Colin, C. S. (2013). Sorption of copper (II) and silver (I) by four bacterial exopolysaccharides. Applied Biochemistry and Biotechnology, 171(6), 1313–1327.CrossRefPubMedGoogle Scholar
  49. 49.
    Milanowski, M., Pomastowski, P., Railean-Plugaru, V., Rafińska, K., Ligor, T., & Buszewski, B. (2017). Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products. PLoS One, 12(3), e0174521.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lin, Z., Zhou, C., Wu, J., Zhou, J., & Wang, L. (2005). A further insight into the mechanism of Ag+ biosorption by Lactobacillus sp. strain A09. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(6), 1195–2000.CrossRefGoogle Scholar
  51. 51.
    Bueno, B. Y., Torem, M. L., Molina, F. A., & De Mesquita, L. M. (2008). Biosorption of lead (II), chromium (III) and copper (II) by R. opacus: equilibrium and kinetic studies. Minerals Engineering, 21(1), 65–75.CrossRefGoogle Scholar
  52. 52.
    Mungasavalli, D. P., Viraraghavan, T., & Jin, Y. C. (2007). Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: batch and column studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1-3), 214–223.CrossRefGoogle Scholar
  53. 53.
    Lameiras, S., Quintelas, C., & Tavares, T. (2008). Biosorption of Cr (VI) using a bacterial biofilm supported on granular activated carbon and on zeolite. Bioresource Technology, 99(4), 801–816.CrossRefPubMedGoogle Scholar
  54. 54.
    Jaafar, R., Al-Sulami, A., Al-Taee, A., Aldoghachi, F., Suhaimi, N., & Mohammed, S. (2016). Biosorption of some heavy metals by Deinococcus radiodurans isolated from soil in Basra Governorate-Iraq. Journal of Bioremediation & Biodegradation, 7, 2.Google Scholar
  55. 55.
    Neumann, G., Veeranagouda, Y., Karegoudar, T. B., Sahin, Ö., Mäusezahl, I., Kabelitz, N., Kappelmeyer, U., & Heipieper, H. J. (2005). Cells of Pseudomonas putida and Enterobacter sp. adapt to toxic organic compounds by increasing their size. Extremophiles, 9(2), 163–168.CrossRefPubMedGoogle Scholar
  56. 56.
    Adarsh, V. K., Mishra, M., Chowdhury, S., Sudarshan, M., Thakur, A. R., & Chaudhuri, S. R. (2007). Studies on metal microbe interaction of three bacterial isolates from East Calcutta Wetland. OnLine Journal of Biological Sciences, 7(2), 80–88.CrossRefGoogle Scholar
  57. 57.
    Panwichian, S., Kantachote, D., Wittayaweerasak, B., & Mallavarapu, M. (2011). Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electronic Journal of Biotechnology, 14, 2–22.Google Scholar
  58. 58.
    Chakravarty, R., Manna, S., Ghosh, A. K., & Banerjee, P. C. (2007). Morphological changes in an Acidocella strain in response to heavy metal stress. Research Journal of Microbiology, 2, 742–748.CrossRefGoogle Scholar
  59. 59.
    Baptista, M. S., & Vasconcelos, M. T. (2006). Cyanobacteria metal interactions: requirements, toxicity, and ecological implications. Critical Reviews in Microbiology, 32(3), 127–137.CrossRefPubMedGoogle Scholar
  60. 60.
    Vaituzis, Z., Nelson, J. D., Wan, L. W., & Colwell, R. R. (1975). Effects of mercuric chloride on growth and morphology of selected strains of mercury-resistant bacteria. Applied Microbiology, 29(2), 275–286.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Ma, Z., Jacobsen, F. E., & Giedroc, D. P. (2009). Coordination chemistry of bacterial metal transport and sensing. Chemical Reviews, 109(10), 4644–4681.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Srivastava, S., & Thakur, I. S. (2007). Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation, 18(5), 637–646.CrossRefPubMedGoogle Scholar
  63. 63.
    Daulton, T. L., Little, B. J., Jones-Meehan, J., Blom, D. A., & Allard, L. F. (2007). Microbial reduction of chromium from the hexavalent to divalent state. Geochimica et Cosmochimica Acta, 71(3), 556–565.CrossRefGoogle Scholar
  64. 64.
    Bencheikh-Latmani, R., Obraztsova, A., Mackey, M. R., Ellisman, M. H., & Tebo, B. M. (2007). Toxicity of Cr (III) to Shewanella sp. strain MR-4 during Cr (VI) reduction. Environmental Science & Technology, 41(1), 214–220.CrossRefGoogle Scholar
  65. 65.
    Huang, F., Guo, C. L., Lu, G. N., Yi, X. Y., Zhu, L. D., & Dangm, Z. (2014). Bioaccumulation characterization of cadmium by growing Bacillus cereus RC-1 and its mechanism. Chemosphere, 109, 134–142.CrossRefPubMedGoogle Scholar
  66. 66.
    Sutherland, I. W. (2001). Biofilm exopolysaccharides: a strong and sticky framework. Microbiology, 147(1), 3–9.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology Advances, 24(5), 427–451.CrossRefPubMedGoogle Scholar
  68. 68.
    Diaz-Visurraga, J., Cárdenas, G., & García, A. (2010). Morphological changes induced in bacteria as evaluated by electron microscopy. In A. Méndez-Vilas & J. Díaz (Eds.), Microscopy: science, technology, applications and education (pp. 307–315). Badajoz: Formatex.Google Scholar
  69. 69.
    Palma, J. M., Sandalio, L. M., Corpas, F. J., Romero-Puertas, M. C., McCarthy, I., & Luis, A. (2002). Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry, 40(6–8), 521–530.CrossRefGoogle Scholar
  70. 70.
    Sardar, K. H., Qing, C. A., Hesham, A. E., Yue, X., & He, J. Z. (2007). Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environmental Sciences, 19, 834–840.CrossRefGoogle Scholar
  71. 71.
    El-Sayed, M. S., Rehab, M. M., & Ahmed, A. S. (2008). Behavioral response of resistant and sensitive Pseudomonas aeruginosa S22 isolated from Sohag Governorate, Egypt to cadmium stress. African Journal of Biotechnology, 7(14), 2375–2385.Google Scholar
  72. 72.
    Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mathew, B. B., Tiwari, A., & Jatawa, S. K. (2011). Free radicals and antioxidants: a review. Journal of Pharmacy Research, 4(12), 4340–4343.Google Scholar
  74. 74.
    Qurashi, A. W., & Sabri, A. N. (2012). Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Brazilian Journal of Microbiology, 43(3), 1183–1191.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Pereira, S., Micheletti, E., Zille, A., Santos, A., Moradas-Ferreira, P., Tamagnini, P., & De Philippis, R. (2011). Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiology, 157(2), 451–458.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Life SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.North Maharashtra Microbial Culture Collection Centre (NMCC)North Maharashtra UniversityJalgaonIndia

Personalised recommendations