Applied Biochemistry and Biotechnology

, Volume 186, Issue 1, pp 54–65 | Cite as

Loop-Mediated Isothermal Amplification Using a Lab-on-a-Disc Device with Thin-film Phase Change Material

  • Junguk Ko
  • Jae-Chern YooEmail author


The design and fabrication of temperature measurement systems that facilitate successful realization of DNA amplification using a lab-on-a-disc (LOD) device are a highly challenging task. The major challenge lies in the fact that such a system must be directly attached to a heating chamber in a way that enables the accurate measurement of temperature of the chamber while allowing the LOD to rotate. This paper presents a temperature control system for implementing isothermal amplification of DNA samples using an LOD device. The proposed system utilizes a thin-film phase change material and non-contact heating system to remotely measure the actual temperature of the chamber and, if required, rapidly heat it to the desired temperature. The results of the experiments performed in this study demonstrate that the proposed system provides an automated platform for molecular amplification and exhibits an operational performance comparable to that of traditional microcentrifuge tube-based isothermal amplification systems.


Lab-on-a-disc POCT DNA amplification Centrifugal microfluidics Loop-mediated isothermal amplification 


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Madou, M., Zoval, J., Jia, G., Kido, H., Kim, J., & Kim, N. (2006). Lab on a CD. Annual Review of Biomedical Engineering, 8(1), 601–628.CrossRefPubMedGoogle Scholar
  2. 2.
    Gopinath, S. C., Awazu, K., Tominaga, J., & Kumar, P. K. (2008). Monitoring biomolecular interactions on a digital versatile disk: a BioDVD platform technology. ACS Nano, 2(9), 1885–1895.CrossRefPubMedGoogle Scholar
  3. 3.
    Mark, D., Weber, P., Lutz, S., Focke, M., Zengerle, R., & von, S. F. (2011). Aliquoting on the centrifugal microfluidic platform based on centrifugo-pneumatic valves. Microfluidics and Nanofluidics, 10(6), 1279–1288.CrossRefGoogle Scholar
  4. 4.
    Glass, N. R., Shilton, R. J., Chan, P. P., Friend, J. R., & Yeo, L. Y. (2012). Miniaturized lab-on-a-disc (miniLOAD). Small, 8(12), 1881–1888.CrossRefPubMedGoogle Scholar
  5. 5.
    Agrawal, S., Morarka, A., Bodas, D., & Paknikar, K. M. (2012). Multiplexed detection of waterborne pathogens in circular microfluidics. Applied Biochemistry and Biotechnology, 167(6), 1668–1677.CrossRefPubMedGoogle Scholar
  6. 6.
    Park, J., Sunkara, V., Kim, T. H., Hwang, H., & Cho, Y. K. (2012). Lab-on-a-disc for fully integrated multiplex immunoassays. Analytical Chemistry, 84(5), 2133–2140.CrossRefPubMedGoogle Scholar
  7. 7.
    Gorkin, R., Park, J., Siegrist, J., Amasia, M., Lee, B. S., Park, J. M., & Cho, Y. K. (2010). Centrifugal microfluidics for biomedical applications. Lab on a Chip, 10(14), 1758–1773.CrossRefPubMedGoogle Scholar
  8. 8.
    Grumann, M., Geipel, A., Riegger, L., Zengerle, R., & Ducrée, J. (2005). Batch-mode mixing on centrifugal microfluidic platforms. Lab on a Chip, 5(5), 560–565.CrossRefPubMedGoogle Scholar
  9. 9.
    Ducrée, J., Haeberle, S., Brenner, T., Glatzel, T., & Zengerle, R. (2006). Patterning of flow and mixing in rotating radial microchannels. Microfluidics and Nanofluidics, 2(2), 97–105.CrossRefGoogle Scholar
  10. 10.
    Roy, E., Stewart, G., Mounier, M., Malic, L., Peytavi, R., Clime, L., & Veres, T. (2015). From cellular lysis to microarray detection, an integrated thermoplastic elastomer (TPE) point of care lab on a disc. Lab on a Chip, 15(2), 406–416.CrossRefPubMedGoogle Scholar
  11. 11.
    Park, J. M., Cho, Y. K., Lee, B. S., Lee, J. G., & Ko, C. (2007). Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab on a Chip, 7(5), 557–564.CrossRefPubMedGoogle Scholar
  12. 12.
    Steigert, J., Grumann, M., Brenner, T., Riegger, L., Harter, J., Zengerle, R., & Ducrée, J. (2006). Fully integrated whole blood testing by real-time absorption measurement on a centrifugal platform. Lab on a Chip, 6(8), 1040–1044.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang, G., Ho, H. P., Chen, Q., Yang, A. K. L., Kwok, H. C., Wu, S. Y., & Zhang, X. (2013). A lab-in-a-droplet bioassay strategy for centrifugal microfluidics with density difference pumping, power to disc and bidirectional flow control. Lab on a Chip, 13(18), 3698–3706.CrossRefPubMedGoogle Scholar
  14. 14.
    Tachibana, H., Saito, M., Shibuya, S., Tsuji, K., Miyagawa, N., Yamanaka, K., & Tamiya, E. (2015). On-chip quantitative detection of pathogen genes by autonomous microfluidic PCR platform. Biosensors and Bioelectronics, 74, 725–730.CrossRefPubMedGoogle Scholar
  15. 15.
    DuVall, J. A., Le, R. D., Tsuei, A. C., Thompson, B. L., Birch, C., Li, J., & Storts, D. R. (2016). A rotationally-driven polyethylene terephthalate microdevice with integrated reagent mixing for multiplexed PCR amplification of DNA. Analytical Methods, 8(40), 7331–7340.CrossRefGoogle Scholar
  16. 16.
    Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., & Hase, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), e63–e63.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Moghimi, H., Moradi, A., Hamedi, J., & Basiri, M. (2016). Development of a loop-mediated isothermal amplification assay for rapid and specific identification of ACT producing Alternaria alternata, the agent of brown spot disease in tangerine. Applied Biochemistry and Biotechnology, 178(6), 1207–1219.CrossRefPubMedGoogle Scholar
  18. 18.
    Mori, Y., Nagamine, K., Tomita, N., & Notomi, T. (2001). Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 289(1), 150–154.CrossRefPubMedGoogle Scholar
  19. 19.
    Kim, T. H., Park, J., Kim, C. J., & Cho, Y. K. (2014). Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Analytical Chemistry, 86(8), 3841–3848.CrossRefPubMedGoogle Scholar
  20. 20.
    Phaneuf, C., Light, Y. K., Tran, H., Singh, A. K., Koh, C. Y. (2015). Non-contact heating system for a centrifugal microlfuidic platform (no. SAND2015-8608C), Sandia National Laboratories (SNL-CA), Livermore, CA (United States).Google Scholar
  21. 21.
    Sayad, A. A., Ibrahim, F., Uddin, S. M., Pei, K. X., Mohktar, M. S., Madou, M., & Thong, K. L. (2016). A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection. Sensors and Actuators B Chemical, 227, 600–609.CrossRefGoogle Scholar
  22. 22.
    Loo, J. F. C., Kwok, H. C., Leung, C. C. H., Wu, S. Y., Law, I. L. G., Cheung, Y. K., & Kong, S. K. (2017). Sample-to-answer on molecular diagnosis of bacterial infection using integrated lab-on-a-disc. Biosensors and Bioelectronics, 93, 212–219.CrossRefPubMedGoogle Scholar
  23. 23.
    Lim, D., & Yoo, J. C. (2017). Chemical cell lysis system applicable to lab-on-a-disc. Applied Biochemistry and Biotechnology, 183(1), 20–29.CrossRefPubMedGoogle Scholar
  24. 24.
    Cho, A. R., Dong, H. J., & Cho, S. (2013). Rapid and sensitive detection of Salmonella spp. by using a loop-mediated isothermal amplification assay in duck carcass sample. Korean Journal for Food Science of Animal Resources, 33(5), 655–663.CrossRefGoogle Scholar
  25. 25.
    Sarı, A. (2004). Form-stable paraffin/high density polyethylene composites as solid–liquid phase change material for thermal energy storage: preparation and thermal properties. Energy Conversion and Management, 45(13–14), 2033–2042.CrossRefGoogle Scholar
  26. 26.
    Yoo, J. C. (2016). Bio drive apparatus, and assay method using the same, Patent No: US 9,279,818 B2 (Mar. 8).Google Scholar
  27. 27.
    Kuniyuki, K. (2007). Optical disk apparatus and a sliding driving mechanism for an optical pickup thereof, Patent No: US 7,266,060 B2 (Sep. 4).Google Scholar
  28. 28.
    Damien, K., Mary, O.’. S., & Jens, D. (2014). Optical detection strategies for centrifugal microfluidic platforms. Journal of Modern Optics, 61(2), 85–101.CrossRefGoogle Scholar
  29. 29.
    Chen, Z., Zhang, K., Yin, H., Li, Q., Wang, L., & Liu, Z. (2015). Detection of Salmonella and several common Salmonella serotypes in food by loop-mediated isothermal amplification method. Food Science and Human Wellness, 4(2), 75–79.CrossRefGoogle Scholar
  30. 30.
    Choi, M. S., & Yoo, J. C. (2015). Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and coriolis effect. Applied Biochemistry and Biotechnology, 175(8), 3778–3787.CrossRefPubMedGoogle Scholar
  31. 31.
    Swinehart, D. F. (1962). The beer-lambert law. Journal of Chemical Education, 39(7), 333.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information and Communication EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations