Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 3, pp 590–596 | Cite as

Direct Utilization of Non-pretreated Hydrolytic Liquid of Dried Distiller’s Grains with Solubles for Bio-Ethanol by Rhizopus arrhizus RH 7-13-9#

  • Huan Liu
  • Shiwei Zhang
  • Na Yu
  • Liting Dou
  • Li Deng
  • Fang Wang
  • Tianwei Tan
Article
  • 61 Downloads

Abstract

Bio-ethanol, as an environment friendly and renewable fuel, has gained increasing worldwide attention and can be produced through the fermentation of the carbohydrates or sugar(s) fraction of biomass materials. Here, dried distiller’s grains with solubles (DDGS), a waste in production of bio-ethanol, were applied to prepare acid-hydrolytic liquid and it was directly used as seed culture and fermentation medium without pretreatment. Rhizopus arrhizus RH 7-13-9# cultured in non-pretreated acid-hydrolytic liquid with pH 4.7 for 30 h could utilize the concentrated hydrolytic liquid as well as the hydrolytic liquid mixed with glucose. A high yield of bio-ethanol was obtained. It was proven that common used medium could be replaced by non-pretreated acid-hydrolytic liquid to some extent. The pretreated process of acid-hydrolytic liquid was avoided that decreased feed stock cost and was significant for the utilization of acid-hydrolytic liquid from lignocellulose materials.

Keywords

Bio-ethanol Dried distiller’s grains with solubles (DDGS) Fermentation Rhizopus arrhizus 

Notes

Acknowledgements

This research was financially supported by National Key research program (2016YFD0400601, 2017YFD0400603, 2017YFB0306900), the Natural Science Foundation of China (21476017), the Hong Kong, Macao, and Taiwan scientific and technological cooperation projects (2015DFT30050), the Amoy Industrial Biotechnology R&D and Pilot Conversion Platform (3502Z20121009), and the Fundamental Research Funds for the Central Universities (PYBZ1712).

Compliance with Ethical Standards

Conflicts of Interest

The authors declared that they have no conflicts of interest.

References

  1. 1.
    Baeyens, J., Kang, Q., Appels, L., Dewil, R., Lv, Y., & Tan, T. (2015). Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and Combustion Science, 47, 60–88.CrossRefGoogle Scholar
  2. 2.
    Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conversion and Management, 52(2), 858–875.CrossRefGoogle Scholar
  3. 3.
    Kang, Q., Appels, L., Baeyens, J., Dewil, R., & Tan, T. (2014). Energy-efficient production of cassava-based bio-ethanol. Advances in Bioscience and Biotechnology, 05(12), 925–939.CrossRefGoogle Scholar
  4. 4.
    Zhang, H. L., Baeyens, J., Degrève, J., & Cacères, G. (2013). Concentrated solar power plants: review and design methodology. Renewable and Sustainable Energy Reviews, 22, 466–481.CrossRefGoogle Scholar
  5. 5.
    Tollefson, J. (2008). Advanced biofuels face an uncertain future. Nature, 452(7188), 670–671.CrossRefGoogle Scholar
  6. 6.
    Fathimaa, A. A., Sanithaa, M., Kumarb, T., Iyappana, S., & Ramyaa, M. (2016). Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183. Bioresource Technology, 202, 253–256.CrossRefGoogle Scholar
  7. 7.
    Guerriero, G., Hausman, J.-F., Strauss, J., Ertan, H., & Siddiqui, K. S. (2016). Lignocellulosic biomass: biosynthesis, degradation, and industrial utilization. Engineering in Life Sciences, 16(1), 1–16.CrossRefGoogle Scholar
  8. 8.
    Sindhu, R., Binod, P., & Pandey, A. (2016). Biological pretreatment of lignocellulosic biomass—an overview. Bioresource Technology, 199, 76–82.CrossRefGoogle Scholar
  9. 9.
    Galbe, M., & Zacchi, G. (2012). Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass and Bioenergy, 46, 70–78.CrossRefGoogle Scholar
  10. 10.
    Huang, Y., Qin, X., Luo, X.-M., Nong, Q., Yang, Q., Zhang, Z., Gao, Y., Lv, F., Chen, Y., Yu, Z., Liu, J.-L., & Feng, J.-X. (2015). Efficient enzymatic hydrolysis and simultaneous saccharification and fermentation of sugarcane bagasse pulp for ethanol production by cellulase from Penicillium oxalicum EU2106 and thermotolerant Saccharomyces cerevisiae ZM1-5. Biomass and Bioenergy, 77, 53–63.CrossRefGoogle Scholar
  11. 11.
    Hilpmann, G., Becher, N., Pahner, F. A., Kusema, B., Mäki-Arvela, P., Lange, R., Murzin, D. Y., & Salmi, T. (2016). Acid hydrolysis of xylan. Catalysis Today, 259, Part 2, 376–380.CrossRefGoogle Scholar
  12. 12.
    Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: an overview. Renewable Energy, 37(1), 19–27.CrossRefGoogle Scholar
  13. 13.
    Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Research, 2011, 1–17.CrossRefGoogle Scholar
  14. 14.
    Gao, Z., Zhang, K., Huang, H., Li, S., & Wei, P. (2009). Fumaric acid production by Rhizopus sp. Progress in Chemistry, 251–258.Google Scholar
  15. 15.
    Liu, H., Ma, J., Wang, M., Wang, W., Deng, L., Nie, K., Yue, X., Wang, F., & Tan, T. (2016). Food waste fermentation to fumaric acid by Rhizopus arrhizus RH7-13. Applied Biochemistry and Biotechnology, 1–10.Google Scholar
  16. 16.
    Abedinifar, S., Karimi, K., Khanahmadi, M., & Taherzadeh, M. J. (2009). Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation. Biomass and Bioenergy, 33(5), 828–833.CrossRefGoogle Scholar
  17. 17.
    Avelar, E., Jha, R., Beltranena, E., Cervantes, M., Morales, A., & Zijlstra, R. T. (2010). The effect of feeding wheat distillers dried grain with solubles on growth performance and nutrient digestibility in weaned pigs. Animal Feed Science and Technology, 160(1-2), 73–77.CrossRefGoogle Scholar
  18. 18.
    Liu, H., Yue, X., Jin, Y., Wang, M., Deng, L., Wang, F., & Tan, T. (2017). Preparation of hydrolytic liquid from dried distiller's grains with solubles and fumaric acid fermentation by Rhizopus arrhizus RH 7-13. Journal of Environmental Management, 201, 172–176.CrossRefGoogle Scholar
  19. 19.
    Liu, H., Hu, H., Jin, Y., Yue, X., Deng, L., Wang, F., & Tan, T. (2017). Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH 7-13-9#. Bioresource Technology, 233, 30–33.CrossRefGoogle Scholar
  20. 20.
    Gu, C., Zhou, Y., Liu, L., Tan, T., & Deng, L. (2013). Production of fumaric acid by immobilized Rhizopus arrhizus on net. Bioresource Technology, 131, 303–307.CrossRefGoogle Scholar
  21. 21.
    Liu, H., Wang, W., Deng, L., Wang, F., & Tan, T. (2015). High production of fumaric acid from xylose by newly selected strain Rhizopus arrhizus RH 7-13-9#. Bioresource Technology, 186, 348–350.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Huan Liu
    • 1
  • Shiwei Zhang
    • 1
  • Na Yu
    • 1
  • Liting Dou
    • 1
  • Li Deng
    • 1
    • 2
  • Fang Wang
    • 1
  • Tianwei Tan
    • 1
  1. 1.Beijing Bioprocess Key Laboratory, State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.Amoy - BUCT Industrial Bio-technovation InstituteAmoyPeople’s Republic of China

Personalised recommendations