Advertisement

Applied Biochemistry and Biotechnology

, Volume 186, Issue 1, pp 40–53 | Cite as

Application of Physicochemical Treatment Allows Reutilization of Arthrospira platensis Exhausted Medium

An Investigation of Reusing Medium in Arthrospira platensis Cultivation
  • Lauris del Carmen Mejia-da-Silva
  • Marcelo Chuei Matsudo
  • Ana Lucia Morocho-Jacome
  • João Carlos Monteiro de Carvalho
Article
  • 101 Downloads

Abstract

Since cultivations of Arthrospira platensis have a high water demand, it is necessary to develop treatment methods for reusing the exhausted medium that may prevent environmental problems and obtaining useful biomass. The exhausted Schlösser medium obtained from A. platensis batch cultivation in bench-scale mini-tanks was treated by varying concentrations of different coagulants, ferric chloride (6, 10, and 14 mg L−1) or ferric sulfate (15, 25, and 35 mg L−1) and powdered activated carbon (PAC, 30 and 50 mg L−1). Such treated effluent was restored with NaNO3 and reused in new cultivations of A. platensis performed in Erlenmeyer flasks. Reusing media through the cultivation of A. platensis showed satisfactory results, particularly in the medium treated with ferric chloride and PAC. The maximum cell concentration obtained in the flasks was 1093 mg L−1, which corresponded to the medium treated with ferric chloride (6 mg L−1) and PAC (30 mg L−1). This cellular growth was higher than in the medium treated with ferric sulfate and PAC, in which values of maximum cell concentration did not exceed 796 mg L−1. The cultures in the media after treatment did not modify the biomass composition. Thus, combined coagulation/adsorption processes, commonly used in water treatment processes, can be efficient and viable for treating exhausted medium of A. platensis, allowing the production of such biomass with the reduction of production cost and saving water.

Keywords

Arthrospira platensis Coagulant Culture medium Effluent Microbial biomass Powdered activated carbon 

Notes

Acknowledgements

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de São Paulo (processes 2011/52028-0 and 2012/08883-6) for financial support and fellowships.

References

  1. 1.
    Hosseini, S. M., Khosravi-Darani, K., & Mozafari, M. R. (2013). Nutritional and medical applications of spirulina microalgae. Mini Reviews in Medicinal Chemistry, 13(8), 1231–1237.  https://doi.org/10.2174/1389557511313080009 CrossRefGoogle Scholar
  2. 2.
    Cohen, Z. (1997). The chemicals of Spirulina. In A. Vonshak (Ed.), Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology. Taylor & Francis Ltd. (pp. 175–204)Google Scholar
  3. 3.
    Olguín, E., Galicia, S., Mercado, G., & Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15(2–3), 249–257.  https://doi.org/10.1023/A:1023856702544 CrossRefGoogle Scholar
  4. 4.
    Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52–63.  https://doi.org/10.1016/j.algal.2014.09.002 CrossRefGoogle Scholar
  5. 5.
    Chiu, S. Y., Kao, C. Y., Chen, T. Y., Chang, Y. B., Kuo, C. M., & Lin, C. S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184, 179–189.  https://doi.org/10.1016/j.biortech.2014.11.080 CrossRefGoogle Scholar
  6. 6.
    Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.  https://doi.org/10.1016/j.rser.2012.11.030 CrossRefGoogle Scholar
  7. 7.
    Abdessemed, D., & Nezzal, G. (2003). Treatment of primary effluent by coagulation-adsorption-ultrafiltration for reuse. Desalination, 152(1–3), 367–373.  https://doi.org/10.1016/S0011-9164(02)01085-8 CrossRefGoogle Scholar
  8. 8.
    Shon, H. K., Vigneswaran, S., Kim, I. S., Cho, J., & Ngo, H. H. (2004). The effect of pretreatment to ultrafiltration of biologically treated sewage effluent: a detailed effluent organic matter (EfOM) characterization. Water Research, 38(7), 1933–1939.  https://doi.org/10.1016/j.watres.2004.01.015 CrossRefGoogle Scholar
  9. 9.
    Brennan, L., & Owende, P. (2010). Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.  https://doi.org/10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  10. 10.
    Morocho-Jácome, A. L., Mascioli, G. F., Sato, S., & de Carvalho, J. C. M. (2015). Continuous cultivation of Arthrospira platensis using exhausted medium treated with granular activated carbon. Journal of Hydrology, 522, 467–474.  https://doi.org/10.1016/j.jhydrol.2015.01.001 CrossRefGoogle Scholar
  11. 11.
    Depraetere, O., Pierre, G., Noppe, W., Vandamme, D., Foubert, I., Michaud, P., & Muylaert, K. (2015). Influence of culture medium recycling on the performance of Arthrospira platensis cultures. Algal Research, 10, 48–54.  https://doi.org/10.1016/j.algal.2015.04.014 CrossRefGoogle Scholar
  12. 12.
    Hadj-Romdhane, F., Zheng, X., Jaouen, P., Pruvost, J., Grizeau, D., Croué, J. P., & Bourseau, P. (2013). The culture of Chlorella vulgaris in a recycled supernatant: effects on biomass production and medium quality. Bioresource Technology, 132, 285–292.  https://doi.org/10.1016/j.biortech.2013.01.025 CrossRefGoogle Scholar
  13. 13.
    Grima, E. M., Belarbi, E. H., Acién Fernández, F. G., Robles Medina, A., & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20(7), 491–515.  https://doi.org/10.1016/S0734-9750(02)00050-2 CrossRefGoogle Scholar
  14. 14.
    Carvalho, J. C. M., Sato, S., & Morocho-Jácome, A. L. (2010). Método de reaproveitamento de efluente a partir do cultivo de microrganismos fotossintetizantes, usos do método de reaproveitamento e usos do material orgânico reaproveitado. Brasil.Google Scholar
  15. 15.
    Kim, D. G., La, H. J., Ahn, C. Y., Park, Y. H., & Oh, H. M. (2011). Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresource Technology, 102(3), 3163–3168.  https://doi.org/10.1016/j.biortech.2010.10.108 CrossRefGoogle Scholar
  16. 16.
    Wu, Z., Zhu, Y., Huang, W., Zhang, C., Li, T., Zhang, Y., & Li, A. (2012). Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresource Technology, 110, 496–502.  https://doi.org/10.1016/j.biortech.2012.01.101 CrossRefGoogle Scholar
  17. 17.
    Rodolfi, L., Zittelli, G. C., Barsanti, L., Rosati, G., & Tredici, M. R. (2003). Growth medium recycling in Nannochloropsis sp. mass cultivation. Biomolecular Engineering, 20(4), 243–248.  https://doi.org/10.1016/S1389-0344(03)00063-7 CrossRefGoogle Scholar
  18. 18.
    Rocha, G. S., Pinto, F. H. V., Melão, M. G. G., & Lombardi, A. T. (2014). Growing Scenedesmus quadricauda in used culture media: is it viable? Journal of Applied Phycology, 27(1), 171–178.CrossRefGoogle Scholar
  19. 19.
    Jourdan, J. P. (2006). Cultivez votre spiruline. Edt. Antenna Technologie, 146 Retrieved from http://oldu.fr/docs/1_Chasse_Peche_Elevage/Cultivez.votre.spiruline_par_Jean.Paul.Jourdan.pdf
  20. 20.
    Morocho-Jácome, A. L., Sato, S., & de Carvalho, J. C. M. (2016). Ferric sulfate coagulation and powdered activated carbon adsorption as simultaneous treatment to reuse the medium in Arthrospira platensis cultivation. Journal of Chemical Technology and Biotechnology, 91(4), 901–910.  https://doi.org/10.1002/jctb.4655 CrossRefGoogle Scholar
  21. 21.
    Schlösser, U. G. (1982). Sammlung von algenkulturen. Plant Biology, 95(1), 181–276.Google Scholar
  22. 22.
    Bezerra, R. P., Matsudo, M. C., Converti, A., Sato, S., & De Carvalho, J. C. M. (2008). Influence of ammonium chloride feeding time and light intensity on the cultivation of Spirulina (Arthrospira) platensis. Biotechnology and Bioengineering, 100(2), 297–305.  https://doi.org/10.1002/bit.21771 CrossRefGoogle Scholar
  23. 23.
    Rodrigues, M. S., Ferreira, L. S., Converti, A., Sato, S., & de Carvalho, J. C. M. (2011). Influence of ammonium sulphate feeding time on fed-batch Arthrospira (Spirulina) platensis cultivation and biomass composition with and without pH control. Bioresource Technology, 102(11), 6587–6592.  https://doi.org/10.1016/j.biortech.2011.03.088 CrossRefGoogle Scholar
  24. 24.
    Belay, A. (1997). Mass culture of Spirulina outdoors—the earthrise farms experience. Spirulina platensis (Arthrospira): Physiology, cell-biology and biotechnology (pp. 131–158).Google Scholar
  25. 25.
    Matsudo, M. C., Bezerra, R. P., Sato, S., Perego, P., Converti, A., & Carvalho, J. C. M. (2009). Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochemical Engineering Journal, 43(1), 52–57.  https://doi.org/10.1016/j.bej.2008.08.009 CrossRefGoogle Scholar
  26. 26.
    Carvalho, J. C. M., Francisco, F. R., Almeida, K. a., Sato, S., & Converti, A. (2004). Cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) by fed-batch addition of ammonium chloride at exponentially increasing feeding rates. Journal of Phycology, 40(3), 589–597.  https://doi.org/10.1111/j.1529-8817.2004.03167.x CrossRefGoogle Scholar
  27. 27.
    Marchetto, M., & Ferreira Filho, S. S. (2005). Interferência do processo de coagulação na remoção de compostos orgânicos causadores de gosto e odor em águas de abastecimento mediante a aplicação de carvão ativado em pó. Engenharia Sanitaria e Ambiental, 10(3), 243–252.  https://doi.org/10.1590/S1413-41522005000300009 CrossRefGoogle Scholar
  28. 28.
    Pelizer, L. H., Sassano, C. E. N., Carvalho, J. C. M., Sato, S., Gioielli, L. A., & Moraes, I. O. (1999). Padronização do método de secagem da biomassa de Spirulina platensis. Revista de Farmácia e Química, v. 32(n. 1), 37–40.Google Scholar
  29. 29.
    APHA, AWWA, & WEF. (1998). Standard methods for the examination of water and wastewater.Google Scholar
  30. 30.
    ABNT. (1992). NBR 12772 Água - Determinação de fósforo - Método de ensaio. Norma Técnica.Google Scholar
  31. 31.
    Kabsch-Korbutowicz, M. (2005). Effect of Al coagulant type on natural organic matter removal efficiency in coagulation/ultrafiltration process. Desalination, 185(1), 327–333.  https://doi.org/10.1016/j.desal.2005.02.083 CrossRefGoogle Scholar
  32. 32.
    Ferrari, G. M., & Tassan, S. (1999). A method using chemical oxidation to remove light absorption by phytoplankton pigments. Journal of Phycology, 35(5), 1090–1098.  https://doi.org/10.1046/j.1529-8817.1999.3551090.x CrossRefGoogle Scholar
  33. 33.
    Leduy, A., & Therien, N. (1977). An improved method for optical density measurement of the semimicroscopic blue green alga Spirulina maxima. Biotechnology and Bioengineering.Google Scholar
  34. 34.
    AOAC. (2007). Official methods of analysis of AOAC International. Association of Official Analysis Chemists International.Google Scholar
  35. 35.
    Olguín, E. J., Galicia, S., Angulo-Guerrero, O., & Hernández, E. (2001). The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresource Technology, 77(1), 19–24.  https://doi.org/10.1016/S0960-8524(00)00142-5 CrossRefGoogle Scholar
  36. 36.
    Farmacopéia, A. N. D. V. S. (2010). Farmacopeia Brasileira. Farmacopeia Brasileira, 5 a edição. doi: https://doi.org/10.1590/S0102-33062006000100002
  37. 37.
    Zhang, Z., Wang, Y., Leslie, G. L., & Waite, T. D. (2015). Effect of ferric and ferrous iron addition on phosphorus removal and fouling in submerged membrane bioreactors. Water Research, 69, 210–222.  https://doi.org/10.1016/j.watres.2014.11.011 CrossRefGoogle Scholar
  38. 38.
    De Haas, D. W., Wentzel, M. C., & Ekama, G. A. (2000). The use of simultaneous chemical precipitation in modified activated sludge systems exhibiting biological excess phosphate removal part 1: literature review. Water SA, 26(4), 439–452.Google Scholar
  39. 39.
    Edzwald, J. K., Becker, W. C., & Wattier, K. L. (1985). Surrogate parameters for monitoring organic matter and THM precursors. Journal / American Water Works Association, 77, 122–132.CrossRefGoogle Scholar
  40. 40.
    Zhan, X., Gao, B., Yue, Q., Liu, B., Xu, X., & Li, Q. (2010). Removal natural organic matter by coagulation-adsorption and evaluating the serial effect through a chlorine decay model. Journal of Hazardous Materials, 183(1), 279–286.  https://doi.org/10.1016/j.jhazmat.2010.06.132 CrossRefGoogle Scholar
  41. 41.
    Morist, A., Montesinos, J. L., Cusidó, J. A., & Gòdia, F. (2001). Recovery and treatment of Spirulina platensis cells cultured in a continuous photobioreactor to be used as food. Process Biochemistry, 37(5), 535–547.  https://doi.org/10.1016/S0032-9592(01)00230-8 CrossRefGoogle Scholar
  42. 42.
    Mahajan, G., & Kamat, M. (1995). γ-Linolenic acid production from Spirulina platensis. Applied Microbiology and Biotechnology, 43(3), 466–469.  https://doi.org/10.1007/BF00218450 CrossRefGoogle Scholar
  43. 43.
    Vonshak, A., & Tomaselli, L. (2002). Arthrospira (Spirulina): systematics and ecophysioiogy. In B. A. Whitton & M. Potts (Eds.), The ecology of Cyanobacteria: their diversity in time and space (pp. 505–522). Dordrecht: Springer Netherlands.  https://doi.org/10.1007/0-306-46855-7_18 CrossRefGoogle Scholar
  44. 44.
    Markou, G. (2012). Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresource Technology, 116, 533–535.  https://doi.org/10.1016/j.biortech.2012.04.022 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lauris del Carmen Mejia-da-Silva
    • 1
  • Marcelo Chuei Matsudo
    • 2
  • Ana Lucia Morocho-Jacome
    • 1
  • João Carlos Monteiro de Carvalho
    • 1
  1. 1.Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil
  2. 2.Institute of Natural ResourcesFederal University of ItajubáItajubáBrazil

Personalised recommendations