Advertisement

Applied Biochemistry and Biotechnology

, Volume 185, Issue 3, pp 834–846 | Cite as

Fabrication of a New Self-assembly Compound of CsTi2NbO7 with Cationic Cobalt Porphyrin Utilized as an Ascorbic Acid Sensor

  • Mengjun Wang
  • Jiasheng Xu
  • Xiaobo Zhang
  • Zichun Fan
  • Zhiwei Tong
Article
  • 129 Downloads

Abstract

A novel sandwich-structured nanocomposite based on Ti2NbO7 nanosheets and cobalt porphyrin (CoTMPyP) was fabricated through electrostatic interaction, in which CoTMPyP has been successfully inserted into the lamellar spacing of layered titanoniobate. The resultant Ti2NbO7/CoTMPyP nanocomposite was characterized by XRD, SEM, TEM, EDS, FT-IR, and UV-vis. It is demonstrated that the intercalated CoTMPyP molecules were found to be tilted approximately 63° against Ti2NbO7 layers. The glass carbon electrode (GCE) modified by Ti2NbO7/CoTMPyP film showed a fine diffusion-controlled electrochemical redox process. Furthermore, the Ti2NbO7/CoTMPyP-modified electrode exhibited excellent electrocatalytic oxidation activity of ascorbic acid (AA). Differential pulse voltammetric studies demonstrated that the intercalated nanocomposite detects AA linearly over a concentration range of 4.99 × 10−5 to 9.95 × 10−4 mol L−1 with a detection limit of 3.1 × 10−5 mol L−1 at a signal-to-noise ratio of 3.0.

Keywords

Intercalation Electrostatic self-assembly Layered titanoniobate Cobalt porphyrin Electrocatalysis 

Notes

Funding Information

This work was supported by Natural Science Fund of Jiangsu Province (BK20161294), HHIT Research Project (Z2015011), Lianyungang Science Project (CG1602), and the Natural Science Foundation of Huaihai Institute of Technology (Z2014004).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2018_2701_MOESM1_ESM.docx (620 kb)
ESM 1 (DOCX 620 kb)

References

  1. 1.
    Liu, X., Wei, S., Chen, S., Yuan, D., & Zhang, W. (2014). Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Applied Biochemistry and Biotechnology, 173(7), 1717–1726.  https://doi.org/10.1007/s12010-014-0959-2 CrossRefGoogle Scholar
  2. 2.
    Liu, C., Han, R., Ji, H., Sun, T., Zhao, J., Chen, N., Chen, J., Guo, X., Hou, W., & Ding, W. (2016). S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity. Physical Chemistry Chemical Physics, 18(2), 801–810.  https://doi.org/10.1039/C5CP06555K CrossRefGoogle Scholar
  3. 3.
    Zhang, X., Li, D., Yin, F., Gong, J., Yang, X., Tong, Z., & Xu, X. (2014). Characterization of a layered methylene blue/vanadium oxide nanocomposite and its application in a reagentless H2O2 biosensor. Applied Biochemistry and Biotechnology, 172(1), 176–187.  https://doi.org/10.1007/s12010-013-0528-0 CrossRefGoogle Scholar
  4. 4.
    Zhai, Z., Hu, C., Yang, X., Zhang, L., Liu, C., Fan, Y., & Hou, W. (2012). Nitrogen-doped mesoporous nanohybrids of TiO2 nanoparticles and HTiNbO5 nanosheets with a high visible-light photocatalytic activity and a good biocompatibility. Journal of Materials Chemistry, 22(36), 19122–19131.  https://doi.org/10.1039/c2jm32338a CrossRefGoogle Scholar
  5. 5.
    Zhai, Z., Huang, Y., Xu, L., Yang, X., Hu, C., Zhang, L., Fan, Y., & Hou, W. (2011). Thermostable nitrogen-doped HTiNbO5 nanosheets with a high visible-light photocatalytic activity. Nano Research, 4(7), 635–647.  https://doi.org/10.1007/s12274-011-0119-8 CrossRefGoogle Scholar
  6. 6.
    Liu, C., Sun, T., Wu, L., Liang, J., Huang, Q., Chen, J., & Hou, W. (2015). N-doped Na2Ti6O13@TiO2 core–shell nanobelts with exposed {1 0 1} anatase facets and enhanced visible light photocatalytic performance. Applied Catalysis B, 170, 17–24.CrossRefGoogle Scholar
  7. 7.
    Zhai, Z., Yang, X., Xu, L., Hu, C., Zhang, L., Hou, W., & Fan, Y. (2012). Novel mesoporous NiO/HTiNbO5 nanohybrids with high visible-light photocatalytic activity and good biocompatibility. Nanoscale, 4(2), 547–556.  https://doi.org/10.1039/C1NR11091H CrossRefGoogle Scholar
  8. 8.
    Hervieu, M., & Raveau, B. (1980). A layer structure: the titanoniobate CsTi2NbO7. Journal of Solid State Chemistry, 32(2), 161–165.  https://doi.org/10.1016/0022-4596(80)90562-9 CrossRefGoogle Scholar
  9. 9.
    Rebbah, H., Hervieu, M., & Raveau, B. (1981). The CsTi2NbO7 type layer oxides: ion exchange properties. Materials Research Bulletin, 16(2), 149–157.  https://doi.org/10.1016/0025-5408(81)90075-1 CrossRefGoogle Scholar
  10. 10.
    Dias, A. S., Lima, S., Carriazo, D., Rives, V., Pillinger, M., & Valente, A. A. (2006). Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural. Journal of Catalysis, 244(2), 230–237.  https://doi.org/10.1016/j.jcat.2006.09.010 CrossRefGoogle Scholar
  11. 11.
    Akatsuka, K., Takanashi, G., Ebina, Y., Haga, M. A., & Sasaki, T. (2012). Electronic band structure of exfoliated titanium-and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. The Journal of Physical Chemistry C, 116(23), 12426–12433.  https://doi.org/10.1021/jp302417a CrossRefGoogle Scholar
  12. 12.
    Xie, K., Wei, W., & Yu, H. (2016). A novel layered titanoniobate as anode material for long-life sodium-ion batteries. RSC Advances, 6(42), 35746–35750.  https://doi.org/10.1039/C6RA02530G CrossRefGoogle Scholar
  13. 13.
    Catti, M., Pinus, I., Ruffo, R., Salamone, M. M., & Mari, C. M. (2016). A novel layered lithium niobium titanate as battery anode material: crystal structure and charge-discharge properties. Solid State Ionics, 295, 72–77.  https://doi.org/10.1016/j.ssi.2016.08.001 CrossRefGoogle Scholar
  14. 14.
    Takagaki, A., Yoshida, T., Lu, D., Kondo, J. N., Hara, M., Domen, K., & Hayashi, S. (2004). Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts. Journal of Physical Chemistry B, 108(31), 11549–11555.  https://doi.org/10.1021/jp049170e CrossRefGoogle Scholar
  15. 15.
    Tanaka, T., Fukuda, K., Ebina, Y., Takada, K., & Sasaki, T. (2004). Highly organized self-assembled monolayer and multilayer films of titania nanosheets. Advanced Materials, 16(11), 872–875.  https://doi.org/10.1002/adma.200306470 CrossRefGoogle Scholar
  16. 16.
    Liu, L., Ma, J., Shao, F., Zhang, D., Gong, J., & Tong, Z. (2012). A nanostructured hybrid synthesized by the intercalation of CoTMPyP into layered titanate: direct electrochemistry and electrocatalysis. Electrochemistry Communications, 24, 74–77.  https://doi.org/10.1016/j.elecom.2012.08.021 CrossRefGoogle Scholar
  17. 17.
    Ma, J., Yang, M., Chen, Y., Liu, L., Zhang, X., Wang, M., Zhang, D., & Tong, Z. (2015). Sandwich-structured composite from the direct coassembly of layered titanate nanosheets and Mn porphyrin and its electrocatalytic performance for nitrite oxidation. Materials Letters, 150, 122–125.  https://doi.org/10.1016/j.matlet.2015.03.039 CrossRefGoogle Scholar
  18. 18.
    Ma, J., Wu, J., Gu, J., Liu, L., Zhang, D., Xu, X., Yang, X., & Tong, Z. (2012). Fabrication and spectroscopic, electrochemical, and catalytic properties of a new intercalation compound of K4Nb6O17 with cationic cobalt porphyrin. Journal of Molecular Catalysis A: Chemical, 357, 95–100.  https://doi.org/10.1016/j.molcata.2012.01.025 CrossRefGoogle Scholar
  19. 19.
    Ma, J., Wu, J., Zheng, J., Liu, L., Zhang, D., Xu, X., Yang, X., & Tong, Z. (2012). Synthesis, characterization and electrochemical behavior of cationic iron porphyrin intercalated into layered niobate. Microporous and Mesoporous Materials, 151, 325–329.  https://doi.org/10.1016/j.micromeso.2011.10.016 CrossRefGoogle Scholar
  20. 20.
    Pan, B., Zhao, W., Zhang, X., Li, J., Xu, J., Ma, J., Liu, L., Zhang, D., & Tong, Z. (2016). Research on self-assembly of exfoliated perovskite nanosheets (LaNb2O7 ) and cobalt porphyrin utilized for electrocatalytic oxidation of ascorbic acid. RSC Advances, 6(52), 46388–46393.  https://doi.org/10.1039/C6RA06429A CrossRefGoogle Scholar
  21. 21.
    Zhang, X., Liu, L., Ma, J., Yang, X., Xu, X., & Tong, Z. (2013). A novel metalloporphyrin intercalated layered niobate as an electrode modified material for detection of hydrogen peroxide. Materials Letters, 95, 21–24.  https://doi.org/10.1016/j.matlet.2012.12.061 CrossRefGoogle Scholar
  22. 22.
    Barnes, M. J. (1975). Function of ascorbic acid in collagen metabolism. Annals of the New York Academy of Sciences, 258(1 Second Confer), 264–277.  https://doi.org/10.1111/j.1749-6632.1975.tb29287.x CrossRefGoogle Scholar
  23. 23.
    Smith, A. R., Visioli, F., & Hagen, T. M. (2002). Vitamin C matters: increased oxidative stress in cultured human aortic endothelial cells without supplemental ascorbic acid. FASEB Journal, 16(9), 1102–1104.  https://doi.org/10.1096/fj.01-0825fje CrossRefGoogle Scholar
  24. 24.
    Kyaw, A. (1978). A simple colorimetric method for ascorbic acid determination in blood plasma. Clinica Chimica Acta, 86(2), 153–157.  https://doi.org/10.1016/0009-8981(78)90128-6 CrossRefGoogle Scholar
  25. 25.
    Marques, I. D. H. C., Marques, E. T. A., Silva, A. C., Ledingham, W. M., Melo, E. H. M., Da Silva, V. L., & Lima Filho, J. L. (1994). Ascorbic acid determination in biological fluids using ascorbate oxidase immobilized on alkylamine glass beads in a flow injection potentiometric system. Applied Biochemistry and Biotechnology, 44(1), 81–89.  https://doi.org/10.1007/BF02921853 CrossRefGoogle Scholar
  26. 26.
    Speek, A. J., Schrijver, J., & Schreurs, W. H. P. (1984). Fluorometric determination of total vitamin C in whole blood by high-performance liquid chromatography with pre-column derive atization. Journal of Chromatography, 305, 53–60.  https://doi.org/10.1016/S0378-4347(00)83313-7 CrossRefGoogle Scholar
  27. 27.
    Sun, C., Lee, H., Yang, J., & Wu, C. (2011). The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosensors and Bioelectronics, 26(8), 3450–3455.  https://doi.org/10.1016/j.bios.2011.01.023 CrossRefGoogle Scholar
  28. 28.
    Pournaghi-Azar, M. H., Razmi-Nerbin, H., & Hafezi, B. (2002). Amperometric determination of ascorbic acid in real samples using an aluminum electrode, modified with nickel hexacyanoferrate films by simple electroless dipping method. Electroanalysis, 14(3), 206–212.  https://doi.org/10.1002/1521-4109(200202)14:3<206::AID-ELAN206>3.0.CO;2-M CrossRefGoogle Scholar
  29. 29.
    Deng, K., Zhou, J., & Li, X. (2013). Noncovalent nanohybrid of cobalt tetraphenylporphyrin with graphene for simultaneous detection of ascorbic acid, dopamine, and uric acid. Electrochimica Acta, 114, 341–346.  https://doi.org/10.1016/j.electacta.2013.09.164 CrossRefGoogle Scholar
  30. 30.
    Liu, X., Wei, S., Chen, S., Yuan, D., & Zhang, W. (2014). Graphene-multiwall carbon nanotube-gold nanocluster composites modified electrode for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Applied Biochemistry and Biotechnology, 173(7), 1717–1726.  https://doi.org/10.1007/s12010-014-0959-2 CrossRefGoogle Scholar
  31. 31.
    Vance Jr., T. B., & Seff, K. (1975). Hydrated and dehydrated crystal structures of seven-twelfths cesium-exchanged zeolite a. Journal of Physical Chemistry, 79, 2163–2167.CrossRefGoogle Scholar
  32. 32.
    Yao, K., Nishimura, S., Imai, Y., Wang, H., Ma, T., Abe, E., Tateyama, H., & Yamagishi, A. (2003). Spectroscopic and photoelectrochemical study of sensitized layered niobate K4Nb6O17. Langmuir, 19(2), 321–325.  https://doi.org/10.1021/la026065s CrossRefGoogle Scholar
  33. 33.
    Machado, A. M., Wypych, F., Drechsel, S. M., & Nakagaki, S. (2002). Study of the catalytic behavior of montmorillonite/iron (III) and Mn (III) cationic porphyrins. Journal of Colloid and Interface Science, 254(1), 158–164.  https://doi.org/10.1006/jcis.2002.8488 CrossRefGoogle Scholar
  34. 34.
    Halma, M., de Freitas Castro, K. A. D., Taviot-Gueho, C., Prévot, V., Forano, C., Wypych, F., & Nakagaki, S. (2008). Synthesis, characterization, and catalytic activity of anionic iron (III) porphyrins intercalated into layered double hydroxides. Journal of Catalysis, 257(2), 233–243.  https://doi.org/10.1016/j.jcat.2008.04.026 CrossRefGoogle Scholar
  35. 35.
    Chen, S., & Chiu, S. (2001). The catalytic and photocatalytic autoxidation of Sx 2− to SO4 2− by water-soluble cobalt porphyrin. Journal of Molecular Catalysis A: Chemical, 166(2), 243–253.  https://doi.org/10.1016/S1381-1169(00)00471-4 CrossRefGoogle Scholar
  36. 36.
    Ma, J., Jiang, H., Zhuo, N., Li, J., Lu, J., Gong, J., Xu, X., & Tong, Z. (2011). Fabrication of polypyrrole/layered niobate nanocomposite and its electrochemical behavior. Journal of Materials Science, 46(21), 6883–6888.  https://doi.org/10.1007/s10853-011-5652-z CrossRefGoogle Scholar
  37. 37.
    Pisoschi, A. M., Pop, A., Serban, A. I., & Fafaneata, C. (2014). Electrochemical methods for ascorbic acid determination. Electrochimica Acta, 121, 443–460.  https://doi.org/10.1016/j.electacta.2013.12.127 CrossRefGoogle Scholar
  38. 38.
    Sternson, A. W., McCreery, R., Feinberg, B., & Adans, R. N. (1973). Electrochemical studies of adrenergic neurotrans-mitters and related compounds. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 46(2), 313–321.  https://doi.org/10.1016/S0022-0728(73)80139-1 CrossRefGoogle Scholar
  39. 39.
    Rusling, J. F., & Zuman, P. (1980). Effects of buffers on polarographic reduction of pyridinecarboxaldehydes. Analytical Chemistry, 52(13), 2209–2211.  https://doi.org/10.1021/ac50063a049 CrossRefGoogle Scholar
  40. 40.
    Qu, F., Li, N., & Jiang, Y. (1998). Electrochemical studies of NiTMPyP and interaction with DNA. Talanta, 45(5), 787–793.  https://doi.org/10.1016/S0039-9140(97)00154-9 CrossRefGoogle Scholar
  41. 41.
    Harris, F. L., & Toppen, D. L. (1978). Kinetics and mechanism of reactions of water-soluble ferriporphyrins. 2. Reduction by ascorbic acid. Inorganic Chemistry, 17(1), 74–77.  https://doi.org/10.1021/ic50179a016 CrossRefGoogle Scholar
  42. 42.
    Deakin, M. R., Kovach, P. M., Stutts, K. J., & Wightman, R. M. (1986). Heterogeneous mechanisms of the oxidation of catechols and ascorbic acid at carbon electrodes. Analytical Chemistry, 58(7), 1474–1480.  https://doi.org/10.1021/ac00298a046 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringHuaihai Institute of TechnologyLianyungangChina
  2. 2.SORST, Japan Science and Technology Agency (JST)SaitamaJapan

Personalised recommendations