Applied Biochemistry and Biotechnology

, Volume 185, Issue 3, pp 847–862 | Cite as

A Comparative Study on Immobilization of Fructosyltransferase in Biodegradable Polymers by Electrospinning

  • Jakub GabrielczykEmail author
  • Thilo Duensing
  • Stefanie Buchholz
  • Alexander Schwinges
  • Hans-Joachim Jördening


Commercial application of biocatalysts depends on the efficiency of the immobilization method and residual enzyme activity. Electrospinning offers a simple and versatile route to immobilize enzymes in submicron-sized fibers and thus improved mass transfer characteristics. Performance of encapsulation of fructosyltransferase from Bacillus subtilis by emulsion, suspension, and coaxial electrospinning was compared. We particularly focused on the effect of hydrophilic properties of a set of biodegradable polymers on support’s activity. Bioactivity of electrospun support in aqueous medium increased in order of the matrix hydrophilicity. Additionally, the efficiency of electrospun fibers was compared with Sepabeads®, commercial epoxy-activated resins. In fibers, enzyme loading of 68.1 mg/g and specific enzyme activity of 5.5 U/mg was achieved compared to 49.5 mg/g and 2.2 U/mg on Sepabeads. Fructosyltransferase exhibited high sensitivity towards organic solvents and covalent attachment, respectively. Immobilization of native enzyme in coaxial fibers increased the specific activity to approx. 30 U/mg which corresponds to 24% of that of the free enzyme. Finally, operational stability of fiber supports was examined in a plug-flow reactor and 5% of initial substrate conversion remained after > 2000 cycles. The efficiency of core-shell immobilizates compared to one-dimensional fibers was both in batch and continuous reaction at least 4.4-fold higher.


Fructosyltransferase Electrospinning Coaxial electrospinning Sepabeads Enzyme immobilization Plug-flow reactor Biodegradable polymers 


  1. 1.
    Sheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis and Catalysis, 349, 1289–1307.CrossRefGoogle Scholar
  2. 2.
    Bhosale, S. H., Rao, M. B., & Deshpande, V. V. (1996). Molecular and industrial aspects of glucose isomerase. Microbiological Reviews, 60, 280–300.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Tanaka, A., Tosa, T., & Kobayashi, T. (1993). Industrial application of immobilized biocatalysts. New York: Marcel Dekker.Google Scholar
  4. 4.
    Sheldon, R. A., & Van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, 42, 6223–6235.CrossRefPubMedGoogle Scholar
  5. 5.
    Hanefeld, U., Gardossi, L., & Magner, E. (2009). Understanding enzyme immobilisation. Chemical Society Reviews, 38, 453–468.CrossRefPubMedGoogle Scholar
  6. 6.
    Lalonde, J. & Margolin A. (2008). Immobilization of enzymes. In Enzyme catalysis in organic synthesis: a comprehensive handbook, (2nd ed.). John Wiley and Sons.
  7. 7.
    Gill, I., & Ballesteros, A. (2000). Bioencapsulation within synthetic polymers (part 1): Sol-gel encapsulated biologicals. Trends in Biotechnology, 18, 282–296.CrossRefPubMedGoogle Scholar
  8. 8.
    Wu, X., Hou, M., & Ge, J. (2015). Metal–organic frameworks and inorganic nanoflowers: A type of emerging inorganic crystal nanocarrier for enzyme immobilization. Catalysis Science & Technology, 5, 5077–5085.CrossRefGoogle Scholar
  9. 9.
    Lyu, F., Zhang, Y., Zare, R. N., Ge, J., & Liu, Z. (2014). One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Letters, 14, 5761–5765.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang, C., Wang, X., Hou, M., Li, X., Wu, X., & Ge, J. (2017). Immobilization on metal-organic framework engenders high sensitivity for enzymatic electrochemical detection. ACS Applied Materials & Interfaces, 9, 13831–13836.CrossRefGoogle Scholar
  11. 11.
    Kim, J., Jia, H., & Wang, P. (2006). Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances, 24, 296–308.CrossRefPubMedGoogle Scholar
  12. 12.
    Buchholz, K., Kasche, V., & Bornscheuer, U. T. (2012). Biocatalysts and enzyme technology (2nd ed.). Ltd: John Wiley & Sons.Google Scholar
  13. 13.
    Tran, D. N. & Balkus, K. J., (2012). Enzyme immobilization via electrospinning. In Top Catal, 55, 1057.
  14. 14.
    Sakai, S., Antoku, K., Yamaguchi, T., Watanabe, R., Kawabe, M., Kawakami, K., & Electrospun, P. V. A. (2010). Fibrous mats immobilizing lipase entrapped in alkylsilicate cages: Application to continuous production of fatty acid butyl ester. Journal of Molecular Catalysis B: Enzymatic, 63, 57–61.CrossRefGoogle Scholar
  15. 15.
    Huang, Z. M., Zhang, Y. Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63, 2223–2253.CrossRefGoogle Scholar
  16. 16.
    Greiner, A., & Wendorff, J. H. (2007). Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chemie - Int. Ed., 46, 5670–5703.CrossRefGoogle Scholar
  17. 17.
    Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28, 325–347.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang, Z. G., Wan, L. S., Liu, Z. M., Huang, X. J., & Xu, Z. K. (2009). Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B: Enzymatic, 56, 189–195.CrossRefGoogle Scholar
  19. 19.
    Xu, R., Chi, C., Li, F., & Zhang, B. (2013). Immobilization of horseradish peroxidase on electrospun microfibrous membranes for biodegradation and adsorption of bisphenol A. Bioresource Technology, 149, 111–116.CrossRefPubMedGoogle Scholar
  20. 20.
    Jia, H., Zhu, G., Vugrinovich, B., Kataphinan, W., Reneker, D. H., & Wang, P. (2002). Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnology Progress, 18, 1027–1032.CrossRefPubMedGoogle Scholar
  21. 21.
    Tang, C., Saquing, C. D., Morton, S. W., Glatz, B. N., Kelly, R. M., & Khan, S. A. (2014). Cross-linked polymer nanofibers for hyperthermophilic enzyme immobilization: Approaches to improve enzyme performance. ACS Applied Materials & Interfaces, 6, 11899–11906.CrossRefGoogle Scholar
  22. 22.
    Velázquez-Hernández, M. L., Baizabal-Aguirre, V. M., Bravo-Patino, A., Cajero-Juárez, M., Chávez-Moctezuma, M. P., & Valdez-Alarcón, J. J. (2009). Microbial fructosyltransferases and the role of fructans. Journal of Applied Microbiology, 106, 1763–1778.CrossRefPubMedGoogle Scholar
  23. 23.
    Gabrielczyk, J., Kluitmann, J., Dammeyer, T., & Jördening, H.-J. (2017). Effects of ionic strength on inclusion body refolding at high concentration. Protein Expression and Purification, 130, 100–106.CrossRefPubMedGoogle Scholar
  24. 24.
    Li, X., Su, Y., Liu, S., Tan, L., Mo, X., & Ramakrishna, S. (2010). Encapsulation of proteins in poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning. Colloids Surfaces B Biointerfaces., 75, 418–424.Google Scholar
  25. 25.
    Emig, G., Klemm, E., Fitzer, E. (2005). Verweilzeitverteilung und Vermischung in kontinuierlich betriebenen Reaktoren. In: Technische Chemie. Springer-Lehrbuch. Berlin, Heidelberg: Springer.
  26. 26.
    Wu, L., Zhang, J., & Watanabe, W. (2011). Physical and chemical stability of drug nanoparticles. Advanced Drug Delivery Reviews, 63, 456–469.CrossRefPubMedGoogle Scholar
  27. 27.
    Rogueda, P. (2005). Novel hydrofluoroalkane suspension formulations for respiratory drug delivery. Expert Opinion on Drug Delivery, 2, 625–638.CrossRefPubMedGoogle Scholar
  28. 28.
    Brena, B., González-Pombo, P., & Batista-Viera, F. (2013). Immobilization of enzymes: A literature survey. Methods in Molecular Biology, 1051, 15–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Gunatillake, P. A., Adhikari, R., & Gadegaard, N. (2003). Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater., 5, 1–16.CrossRefGoogle Scholar
  30. 30.
    Venugopal, J., Low, S., Choon, A. T., Bharath Kumar, A., & Ramakrishna, S. (2008). Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells. J. Biomed. Mater. Res. - Part A., 85, 408–417.CrossRefGoogle Scholar
  31. 31.
    Gupta, D., Venugopal, J., Mitra, S., Giri Dev, V. R., & Ramakrishna, S. (2009). Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts. Biomaterials, 30, 2085–2094.CrossRefPubMedGoogle Scholar
  32. 32.
    Zong, X., Bien, H., Chung, C. Y., Yin, L., Fang, D., Hsiao, B. S., Chu, B., & Entcheva, E. (2005). Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials, 26, 5330–5338.CrossRefPubMedGoogle Scholar
  33. 33.
    Lee, M. W., An, S., Latthe, S. S., Lee, C., Hong, S., & Yoon, S. S. (2013). Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Applied Materials & Interfaces, 5, 10597–10604.CrossRefGoogle Scholar
  34. 34.
    Liu, H., & Lo Hsieh, Y. (2002). Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci. Part B Polym. Phys., 40, 2119–2129.CrossRefGoogle Scholar
  35. 35.
    Saravanan, M., & Domb, A. J. (2013). A contemporary review on - polymer stereocomplexes and its biomedical application. Eur. J Nanomedicine., 5, 81–96.CrossRefGoogle Scholar
  36. 36.
    Janssen, M. H. A., van Langen, L. M., Pereira, S. R. M., van Rantwijk, F., & Sheldon, R. A. (2002). Evaluation of the performance of immobilized penicillin G acylase using active-site titration. Biotechnology and Bioengineering, 78, 425–432.CrossRefPubMedGoogle Scholar
  37. 37.
    Barros, R. J., Wehtje, E., & Adlercreutz, P. (1998). Mass transfer studies on immobilized α-chymotrypsin biocatalysts prepared by deposition for use in organic medium. Biotechnology and Bioengineering, 59, 364–373.CrossRefPubMedGoogle Scholar
  38. 38.
    Tong, H. W., Mutlu, B. R., Wackett, L. P., & Aksan, A. (2014). Manufacturing of bioreactive nanofibers for bioremediation. Biotechnology and Bioengineering, 111, 1483–1493.CrossRefPubMedGoogle Scholar
  39. 39.
    Lee, B.-S., Jeon, S.-Y., Park, H., Lee, G., Yang, H.-S., & Yu, W.-R. (2014). New electrospinning nozzle to reduce jet instability and its application to manufacture of multi-layered nanofibers. Scientific Reports, 4, 6758.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yarin, A. L. (2011). Coaxial electrospinning and emulsion electrospinning of core-shell fibers. Polymers for Advanced Technologies, 22, 310–317.CrossRefGoogle Scholar
  41. 41.
    Müller, C., Ortmann, T., Abi, A., Hartig, D., Scholl, S., & Jördening, H. J. (2017). Immobilization and characterization of E. gracilis extract with enriched laminaribiose phosphorylase activity for bienzymatic production of laminaribiose. Applied Biochemistry and Biotechnology, 182, 197–215.CrossRefPubMedGoogle Scholar
  42. 42.
    Fink, A. L. (1998). Protein aggregation: Folding aggregates, inclusion bodies and amyloid. Folding & Design, 3, 9–23.CrossRefGoogle Scholar
  43. 43.
    Barros, R. J., Wehtje, E., & Adlercreutz, P. (2000). Effect of mass-transfer limitations on the selectivity of immobilized α-chymotrypsin biocatalysts prepared for use in organic medium. Biotechnology and Bioengineering, 67, 319–326.CrossRefPubMedGoogle Scholar
  44. 44.
    Cheetham, P. S. J., Hacking, A. J., & Vlitos, M. (1989). Synthesis of novel disaccharides by a newly isolated fructosyl transferase from Bacillus subtilis. Enzyme and Microbial Technology, 11, 212–219.CrossRefGoogle Scholar
  45. 45.
    Ye, M., Kim, S., & Park, K. (2010). Issues in long-term protein delivery using biodegradable microparticles. Journal of Controlled Release, 146, 241–260.CrossRefPubMedGoogle Scholar
  46. 46.
    Siepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 161, 351–362.CrossRefPubMedGoogle Scholar
  47. 47.
    Erhardt, F. A., Kügler, J., Chakravarthula, R. R., & Jördening, H. J. (2008). Co-immobilization of dextransucrase and dextranase for the facilitated synthesis of isomalto-oligosaccharides: Preparation, characterization and modeling. Biotechnology and Bioengineering, 100, 673–683.CrossRefPubMedGoogle Scholar
  48. 48.
    Tian, F., Karboune, S., & Hill, A. (2014). Synthesis of fructooligosaccharides and oligolevans by the combined use of levansucrase and endo-inulinase in one-step bi-enzymatic system. Innov. Food Sci. Emerg. Technol., 22, 230–238. CrossRefGoogle Scholar
  49. 49.
    Plou, F. J., Fernandez-Arrojo, L., Santos-Moriano, P., Ballesteros, A. O. (2014). Application of immobilized enzymes for the synthesis of bioactive fructooligosaccharides. In Food oligosaccharides: production, analysis and bioactivity: production, analysis and bioactivity, (pp. 200–216). John Wiley and Sons.
  50. 50.
    Patel, A. C., Li, S., Yuan, J. M., & Wei, Y. (2006). In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Letters, 6, 1042–1046.CrossRefPubMedGoogle Scholar
  51. 51.
    Kandimalla, V., Tripathi, V. S., & Ju, H. (2006). Immobilization of biomolecules in sol-gels: Biological and analytical applications. Critical Reviews in Analytical Chemistry, 36, 73–106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Technical Chemistry, Section of Carbohydrate TechnologyTechnical University BraunschweigBraunschweigGermany

Personalised recommendations