Applied Biochemistry and Biotechnology

, Volume 188, Issue 3, pp 690–705 | Cite as

Hydrolysis of Corn Stover by Talaromyces cellulolyticus Enzymes: Evaluation of the Residual Enzymes Activities Through the Process

  • Federico Liuzzi
  • Silvio Mastrolitti
  • Isabella De BariEmail author


The obtainment of sugars from lignocellulosic residues represents a sustainable and versatile platform for the production of a number of bio-based products. Cellulases are a family of enzymes which can effectively hydrolyze the biomass polysaccharides at mild conditions. Cellulolytic fungi belonging to the genera Trichoderma and Aspergillus are the most commonly source of commercial cellulases used so far. More recently, Talaromyces cellulolyticus was also scored as a promising cellulases producer. In comparison to the Trichoderma and Aspergillus systems, Talaromyces enzymes have been less investigated. The present research dealt with the conversion of steam-pretreated corn stover by commercial blend of T. cellulolyticus enzymes with respect to the common blends. The paper also investigated the stability of the enzyme preparation and tested the use of additives (namely Tween 80, Tween 20, and BSA) to improve the enzymes performances and the hydrolysis efficiency. The results indicated that, at the same process conditions, T. cellulolyticus cellulases were more effective and yielded 20% more sugars compared to control blends. Furthermore, the cellulase components displayed a synergistic interaction with hemicellulases. The results indicate that cellulases from T. cellulolyticus are less affected by the high dry matter consistency and the use of additives could increase the total activity by around 50% and β-glucosidase capacity by 10–15%.


Enzymatic hydrolysis Talaromyces cellulolyticus cellulases Unspecific binding Additives Surfactants 


Supplementary material

12010_2018_2946_MOESM1_ESM.docx (126 kb)
ESM 1 (DOCX 126 kb)


  1. 1.
    Perlack, R. D., Eaton, L. M., Turhollow Jr, A. F., Langholtz, M. H., Brandt, C. C., Downing, M. E., . & Nelson, R. G. (2011). US billion-ton update: biomass supply for a bioenergy and bioproducts industry.Google Scholar
  2. 2.
    Garlock, R. J., Chundawat, S. P., Balan, V., & Dale, B. E. (2009). Optimizing harvest of corn stover fractions based on overall sugar yields following ammonia fiber expansion pretreatment and enzymatic hydrolysis. Biotechnology for Biofuels, 2(1), 29.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101(6), 1570–1580.PubMedCrossRefGoogle Scholar
  4. 4.
    Stichnothe, H., Storz, H., Meier, D., De Bari, I., & Thomas, S. (2016). Development of second-generation biorefineries. In Developing the global bioeconomy: Technical, market, and environmental lessons from bioenergy (p. 11).CrossRefGoogle Scholar
  5. 5.
    Kazi, F. K., Fortman, J. A., Anex, R. P., Hsu, D. D., Aden, A., Dutta, A., & Kothandaraman, G. (2010). Techno-economic comparison of process technologies for biochemical ethanol production from corn stover. Fuel, 89, S20–S28.CrossRefGoogle Scholar
  6. 6.
    Macrelli, S., Mogensen, J., & Zacchi, G. (2012). Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnology for Biofuels, 5(1), 22.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Kubicek, C. P. (2013). Systems biological approaches towards understanding cellulase production by Trichoderma reesei. Journal of Biotechnology, 163(2), 133–142.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66(3), 506–577.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Merino, S. T., & Cherry, J. (2007). Progress and challenges in enzyme development for biomass utilization. In Biofuels (pp. 95–120). Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  10. 10.
    Gusakov, A. V. (2011). Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnology, 29(9), 419–425.PubMedCrossRefGoogle Scholar
  11. 11.
    Skomarovsky, A. A., Markov, A. V., Gusakov, A. V., Kondrat’eva, E. G., Okunev, O. N., Bekkarevich, A. O., & Sinitsyn, A. P. (2006). New cellulases efficiently hydrolyzing lignocellulose pulp. Applied Biochemistry and Microbiology, 42(6), 592–597.CrossRefGoogle Scholar
  12. 12.
    Martins, L. F., Kolling, D., Camassola, M., Dillon, A. J. P., & Ramos, L. P. (2008). Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates. Bioresource Technology, 99(5), 1417–1424.PubMedCrossRefGoogle Scholar
  13. 13.
    de Castro, A. M., de Carvalho, M. L. D. A., Leite, S. G. F., & Pereira, N. (2010). Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. Journal of Industrial Microbiology & Biotechnology, 37(2), 151–158.CrossRefGoogle Scholar
  14. 14.
    Gusakov, A. V., Salanovich, T. N., Antonov, A. I., Ustinov, B. B., Okunev, O. N., Burlingame, R., & Sinitsyn, A. P. (2007). Design of highly efficient cellulase mixtures for enzymatic hydrolysis of cellulose. Biotechnology and Bioengineering, 97(5), 1028–1038.PubMedCrossRefGoogle Scholar
  15. 15.
    Ikeda, Y., Hayashi, H., Okuda, N., & Park, E. Y. (2007). Efficient cellulase production by the filamentous fungus Acremonium cellulolyticus. Biotechnology Progress, 23(2), 333–338.PubMedCrossRefGoogle Scholar
  16. 16.
    Fujii, T., Hoshino, T., Inoue, H., & Yano, S. (2014). Taxonomic revision of the cellulose-degrading fungus Acremonium cellulolyticus nomen nudum to Talaromyces based on phylogenetic analysis. FEMS Microbiology Letters, 351(1), 32–41.PubMedCrossRefGoogle Scholar
  17. 17.
    Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2009). Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. Journal of Bioscience and Bioengineering, 107(3), 256–261.PubMedCrossRefGoogle Scholar
  18. 18.
    Fang, H., Zhao, C., & Song, X. Y. (2010). Optimization of enzymatic hydrolysis of steam-exploded corn stover by two approaches: response surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02. Bioresource Technology, 101(11), 4111–4119.PubMedCrossRefGoogle Scholar
  19. 19.
    Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C., & Pandey, A. (2013). Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 127, 500–507.PubMedCrossRefGoogle Scholar
  20. 20.
    Inoue, H., Decker, S. R., Taylor, L. E., Yano, S., & Sawayama, S. (2014). Identification and characterization of core cellulolytic enzymes from Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) critical for hydrolysis of lignocellulosic biomass. Biotechnology for Biofuels, 7(1), 151.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kansarn, S., Matsushita, N., Kono, T., & Okada, G. (2000). Purification and characterization of an endocellulase from Acremonium cellulolyticus. Journal of Applied Glycoscience, 47(2), 177–185.CrossRefGoogle Scholar
  22. 22.
    Rahikainen, J., Mikander, S., Marjamaa, K., Tamminen, T., Lappas, A., Viikari, L., & Kruus, K. (2011). Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface. Biotechnology and Bioengineering, 108(12), 2823–2834.PubMedCrossRefGoogle Scholar
  23. 23.
    Börjesson, J., Peterson, R., & Tjerneld, F. (2007). Enhanced enzymatic conversion of softwood lignocellulose by poly (ethylene glycol) addition. Enzyme and Microbial Technology, 40(4), 754–762.CrossRefGoogle Scholar
  24. 24.
    Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6), 1458–1480.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaar, W. E., & Holtzapple, M. T. (1998). Benefits from Tween during enzymic hydrolysis of corn stover. Biotechnology and Bioengineering, 59(4), 419–427.PubMedCrossRefGoogle Scholar
  26. 26.
    Yang, B., & Wyman, C. E. (2006). BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnology and Bioengineering, 94(4), 611–617.PubMedCrossRefGoogle Scholar
  27. 27.
    Kristensen, J. B., Börjesson, J., Bruun, M. H., Tjerneld, F., & Jørgensen, H. (2007). Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme and Microbial Technology, 40(4), 888–895.CrossRefGoogle Scholar
  28. 28.
    Kumar, R., & Wyman, C. E. (2009). Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnology and Bioengineering, 102(6), 1544–1557.PubMedCrossRefGoogle Scholar
  29. 29.
    Rocha-Martín, J., Martinez-Bernal, C., Pérez-Cobas, Y., Reyes-Sosa, F. M., & García, B. D. (2017). Additives enhancing enzymatic hydrolysis of lignocellulosic biomass. Bioresource Technology, 244(Pt 1), 48–56.PubMedCrossRefGoogle Scholar
  30. 30.
    Eriksson, T., Börjesson, J., & Tjerneld, F. (2002). Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology, 31(3), 353–364.CrossRefGoogle Scholar
  31. 31.
    Seo, D. J., Fujita, H., & Sakoda, A. (2011). Effects of a non-ionic surfactant, Tween 20, on adsorption/desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption, 17(5), 813–822.CrossRefGoogle Scholar
  32. 32.
    Zhang, H., Ye, G., Wei, Y., Li, X., Zhang, A., & Xie, J. (2017). Enhanced enzymatic hydrolysis of sugarcane bagasse with ferric chloride pretreatment and surfactant. Bioresource Technology, 229, 96–103.PubMedCrossRefGoogle Scholar
  33. 33.
    Tu, M., Chandra, R. P., & Saddler, J. N. (2007). Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnology Progress, 23(5), 1130–1137.PubMedGoogle Scholar
  34. 34.
    Li, Y., Sun, Z., Ge, X., & Zhang, J. (2016). Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. Biotechnology for Biofuels, 9(1), 20.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Zheng, Y., Pan, Z., Zhang, R., Wang, D., & Jenkins, B. (2008). Non-ionic surfactants and non-catalytic protein treatment on enzymatic hydrolysis of pretreated creeping wild ryegrass. Applied Biochemistry and Biotechnology, 146(1–3), 231–248.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, H., Kobayashi, S., Hiraide, H., Cui, Z., & Mochidzuki, K. (2015). The effect of nonenzymatic protein on lignocellulose enzymatic hydrolysis and simultaneous saccharification and fermentation. Applied Biochemistry and Biotechnology, 175(1), 287–299.PubMedCrossRefGoogle Scholar
  37. 37.
    Okino, S., Ikeo, M., Ueno, Y., & Taneda, D. (2013). Effects of Tween 80 on cellulase stability under agitated conditions. Bioresource Technology, 142, 535–539.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhou, Y., Chen, H., Qi, F., Zhao, X., & Liu, D. (2015). Non-ionic surfactants do not consistently improve the enzymatic hydrolysis of pure cellulose. Bioresource Technology, 182, 136–143.PubMedCrossRefGoogle Scholar
  39. 39.
    Jiang, F., Qian, C., Esker, A. R., & Roman, M. (2017). Effect of nonionic surfactants on dispersion and polar interactions in the adsorption of cellulases onto lignin. The Journal of Physical Chemistry, 121(41), 9607–9620.PubMedCrossRefGoogle Scholar
  40. 40.
    Lou, H., Zeng, M., Hu, Q., Cai, C., Lin, X., Qiu, X., & Pang, Y. (2018). Nonionic surfactants enhanced enzymatic hydrolysis of cellulose by reducing cellulase deactivation caused by shear force and air-liquid interface. Bioresource Technology, 249, 1–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Bhagia, S., Dhir, R., Kumar, R., & Wyman, C. E. (2018). Deactivation of cellulase at the air-liquid interface is the main cause of incomplete cellulose conversion at low enzyme loadings. Scientific Reports, 8(1), 1350.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Mooney, C. A., Mansfield, S. D., Touhy, M. G., & Saddler, J. N. (1998). The effect of initial pore volume and lignin content on the enzymatic hydrolysis of softwoods. Bioresource Technology, 64(2), 113–119.CrossRefGoogle Scholar
  43. 43.
    Ramachandran, P., Kim, T. S., Dhiman, S. S., Li, J., Park, J. H., Choi, J. H., Kim, J. Y., Kim, D., & Lee, J. K. (2015). Saccharification of sunflower stalks using lignocellulases from a fungal consortium comprising Pholiota adiposa and Armillaria gemina. Bioprocess and Biosystems Engineering, 38(9), 1645–1653.PubMedCrossRefGoogle Scholar
  44. 44.
    Kruger, N. J. (1994). The Bradford method for protein quantitation. In Basic protein and peptide protocols (pp. 9–15).CrossRefGoogle Scholar
  45. 45.
    Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257–268.CrossRefGoogle Scholar
  46. 46.
    Mandels, M., Hontz, L., & Nystrom, J. (1974). Enzymatic hydrolysis of waste cellulose. Biotechnology and Bioengineering, 16(11), 1471–1493.CrossRefGoogle Scholar
  47. 47.
    Roche, C. M., Dibble, C. J., Knutsen, J. S., Stickel, J. J., & Liberatore, M. W. (2009). Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings. Biotechnology and Bioengineering, 104(2), 290–300.PubMedCrossRefGoogle Scholar
  48. 48.
    De Bari, I., Liuzzi, F., Villone, A., & Braccio, G. (2013). Hydrolysis of concentrated suspensions of steam pretreated Arundo donax. Applied Energy, 102, 179–189.CrossRefGoogle Scholar
  49. 49.
    Kristensen, J. B., Felby, C., & Jørgensen, H. (2009). Determining yields in high solids enzymatic hydrolysis of biomass. Applied Biochemistry and Biotechnology, 156(1–3), 127–132.PubMedCrossRefGoogle Scholar
  50. 50.
    Du, J., Cao, Y., Liu, G., Zhao, J., Li, X., & Qu, Y. (2017). Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations. Bioresource Technology, 229, 88–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Rahikainen, J. L., Evans, J. D., Mikander, S., Kalliola, A., Puranen, T., Tamminen, T., & Kruus, K. (2013). Cellulase–lignin interactions—the role of carbohydrate-binding module and pH in non-productive binding. Enzyme and Microbial Technology, 53(5), 315–321.PubMedCrossRefGoogle Scholar
  52. 52.
    Fujii, T., Fang, X., Inoue, H., Murakami, K., & Sawayama, S. (2009). Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnology for Biofuels, 2(1), 24.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Qing, Q., Yang, B., & Wyman, C. E. (2010). Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresource Technology, 101(24), 9624–9630.PubMedCrossRefGoogle Scholar
  54. 54.
    De Bari, I., Cuna, D., Nanna, F., Braccio, G (2004). Ethanol production in immobilized-cell bioreactors from mixed sugar syrups and enzymatic hydrolysates of steam-exploded biomass. Applied Biochemistry and Biotechnology, 113-116:539–557.Google Scholar
  55. 55.
    Nihira, T., Kansarn, S., Kono, T., & Okada, G. (2001). Purification and properties of three endo-xylanases from Acremonium cellulolyticus. Journal of Applied Glycoscience, 48(1), 45–54.CrossRefGoogle Scholar
  56. 56.
    Kanna, M., Yano, S., Inoue, H., Fujii, T., & Sawayama, S. (2011). Enhancement of β-xylosidase productivity in cellulase producing fungus Acremonium cellulolyticus. AMB Express, 1(1), 15.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rahikainen, J. L., Martin-Sampedro, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., Rojas, O. J., & Kruus, K. (2013). Inhibitory effect of lignin during cellulose bioconversion: the effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology, 133, 270–278.PubMedCrossRefGoogle Scholar
  58. 58.
    Saini, J. K., Patel, A. K., Adsul, M., & Singhania, R. R. (2016). Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renewable Energy, 98, 29–42.CrossRefGoogle Scholar
  59. 59.
    Cui, L., Liu, Z., Hui, L. F., & Si, C. L. (2011). Effect of cellobiase and surfactant supplementation on the enzymatic hydrolysis of pretreated wheat straw. BioResources, 6(4), 3850–3858.Google Scholar
  60. 60.
    Yohannes, G., Wiedmer, S. K., Elomaa, M., Jussila, M., Aseyev, V., & Riekkola, M. L. (2010). Thermal aggregation of bovine serum albumin studied by asymmetrical flow field-flow fractionation. Analytica Chimica Acta, 675(2), 191–198.PubMedCrossRefGoogle Scholar
  61. 61.
    Arias, J. M., de Oliveira Moraes, A., Modesto, L. F. A., de Castro, A. M., & Pereira, N., Jr. (2017). Addition of surfactants and non-hydrolytic proteins and their influence on enzymatic hydrolysis of pretreated sugarcane bagasse. Applied Biochemistry and Biotechnology, 181(2), 593–603.CrossRefGoogle Scholar
  62. 62.
    Graca, M., Bongaerts, J. H., Stokes, J. R., & Granick, S. (2007). Friction and adsorption of aqueous polyoxyethylene (Tween) surfactants at hydrophobic surfaces. Journal of Colloid and Interface Science, 315(2), 662–670.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Federico Liuzzi
    • 1
  • Silvio Mastrolitti
    • 1
  • Isabella De Bari
    • 1
    Email author
  1. 1.Laboratory of Technologies and Processes for Biorefineries and Green ChemistryENEA Trisaia Research CentreRotondellaItaly

Personalised recommendations