Feasibility of Growing Chlorella sorokiniana on Cooking Cocoon Wastewater for Biomass Production and Nutrient Removal

  • Da Li
  • Philip Kwabena Amoah
  • Biao Chen
  • Chunye Xue
  • Xiaoli Hu
  • Kun Gao
  • Xiangyuan Deng


The feasibility of microalgae cultivation using cooking cocoon wastewater (CCW) collected from a silk production factory was investigated in this work. Results showed that Chlorella sorokiniana grew well on the CCW whether it was autoclaved or not. After 7-day cultivation, the biomass increased by 1.57, 2.78, 3.33, and 3.14 times, and by 3.65, 4.03, 3.27, and 2.82 times when this alga was cultivated in the raw CCW (R-CCW) and autoclaved CCW (A-CCW) at the initial dry cell densities of 0.01, 0.04, 0.08, and 0.16 g/L, respectively. The algal photosynthetic growth was not affected when this alga grew on the R-CCW at an initial dry cell density of ≥ 0.04 g/L, while it was significantly inhibited when the initial dry cell density was 0.01 g/L. Additionally, this alga could remove nutrients rapidly from the CCW, and the removal efficiency increased with the increase of initial dry cell density. Thus, it was concluded that the CCW could be used as a good-quality medium for the algal growth, which is worthy of further study and promotion.


Chlorella sorokiniana Cooking cocoon wastewater Nutrient removal Chemical compositions Photosynthetic performance 



This manuscript was supported by the Project of “Six Talent Peak” of Jiangsu Province (SWYY-025), the Qinglan Project of Jiangsu Province (2016), the Shenlan Project of Jiangsu University of Science and Technology (2015), and the China Scholarship Council (Grant No. 201802180064).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Statement

The authors declare that there are no studies conducted with human participants or animals.


  1. 1.
    Fazal, T., Mushtaq, A., Rehman, F., Ullah Khan, A., Rashid, N., Farooq, W., Rehman, M. S. U., & Xu, J. (2018). Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renewable and Sustainable Energy Reviews, 82, 3107–3126.CrossRefGoogle Scholar
  2. 2.
    Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: a rich source for food and medicine. Saudi Journal of Biological Sciences.
  3. 3.
    Rastogi, R. P., Pandey, A., Larroche, C., & Madamwar, D. (2017). Algal green energy – R&D and technological perspectives for biodiesel production. Renewable and Sustainable Energy Reviews, 82, 2946–2969.CrossRefGoogle Scholar
  4. 4.
    Pleissner, D., & Rumpold, B. A. (2018). Utilization of organic residues using heterotrophic microalgae and insects. Waste Management, 72, 227–239.CrossRefGoogle Scholar
  5. 5.
    Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technology, 102(1), 159–165.CrossRefGoogle Scholar
  6. 6.
    Zhou, W., Chen, P., Min, M., Ma, X., Wang, J., Griffith, R., Hussain, F., Peng, P., Xie, Q., Li, Y., Shi, J., Meng, J., & Ruan, R. (2014). Environment-enhancing algal biofuel production using wastewaters. Renewable and Sustainable Energy Reviews, 36, 256–269.CrossRefGoogle Scholar
  7. 7.
    Guldhe, A., Kumari, S., Ramanna, L., Ramsundar, P., Singh, P., Rawat, I., & Bux, F. (2017). Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. Journal of Environmental Management, 203(Pt 1), 299–315.CrossRefGoogle Scholar
  8. 8.
    He, P. J., Mao, B., Shen, C. M., Shao, L. M., Lee, D. J., & Chang, J. S. (2013). Cultivation of Chlorella vulgaris on wastewater containing high levels of ammonia for biodiesel production. Bioresource Technology, 129, 177–181.CrossRefGoogle Scholar
  9. 9.
    Mujtaba, G., & Lee, K. (2017). Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge. Water Research, 120, 174–184.CrossRefGoogle Scholar
  10. 10.
    Udaiyappan, A. F. M., Hasan, H. A., Takriff, M. S., & Abdullah, S. R. S. (2017). A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. Journal of Water Process Engineering, 20, 8–21.CrossRefGoogle Scholar
  11. 11.
    Chung, Y. S., Lee, J. W., & Chung, C. H. (2017). Molecular challenges in microalgae towards cost-effective production of quality biodiesel. Renewable and Sustainable Energy Reviews, 74, 139–144.CrossRefGoogle Scholar
  12. 12.
    Quijano, G., Arcila, J. S., & Buitrón, G. (2017). Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnology Advances, 35(6), 772–781.CrossRefGoogle Scholar
  13. 13.
    Capar, G., Aygun, S. S., & Gecit, M. R. (2008). Treatment of silk production wastewaters by membrane processes for sericin recovery. Journal of Membrane Science, 325(2), 920–931.CrossRefGoogle Scholar
  14. 14.
    Wu, J. H., Wang, Z., & Xu, S. Y. (2007). Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chemistry, 103(4), 1255–1262.CrossRefGoogle Scholar
  15. 15.
    Zhang, Y. Q. (2002). Applications of natural silk protein sericin in biomaterials. Biotechnology Advances, 20(2), 91–100.CrossRefGoogle Scholar
  16. 16.
    Li, Y., Chen, Y. F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., & Ruan, R. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138–5144.CrossRefGoogle Scholar
  17. 17.
    Miazek, K., & Ledakowicz, S. (2013). Chlorophyll extraction from leaves, needles and microalgae: a kinetic approach. International Journal of Agricultural and Biological Engineering, 6, 107–115.Google Scholar
  18. 18.
    Deng, X. Y., Gao, K., Zhang, R. C., Addy, M., Lu, Q., Ren, H. Y., Chen, P., Liu, Y. H., & Ruan, R. (2017). Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 243, 417–425.CrossRefGoogle Scholar
  19. 19.
    Deng, X. Y., Li, D., Wang, L., Hu, X. L., Cheng, J., & Gao, K. (2017). Potential toxicity of ionic liquid ([C12mim]BF4) on the growth and biochemical characteristics of a marine diatom Phaeodactylum tricornutum. Science of the Total Environment, 586, 675–684.CrossRefGoogle Scholar
  20. 20.
    Ben-Amotz, A., Tornabene, T. G., & Thomas, W. H. (1985). Chemical profile of selected species of microalgae with emphasis on lipids. Journal of Phycology, 21, 72–81.CrossRefGoogle Scholar
  21. 21.
    Cai, T., Park, S. Y., & Li, Y. (2013). Nutrient recovery from wastewater streams by microalgae: status and prospects. Renewable and Sustainable Energy Reviews, 19, 360–369.CrossRefGoogle Scholar
  22. 22.
    Hena, S., Znad, H., Heong, K. T., & Judd, S. (2017). Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Research, 128, 267–277.CrossRefGoogle Scholar
  23. 23.
    Park, J., Jin, H. F., Lim, B. R., Park, K. Y., & Lee, K. (2010). Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource Technology, 101(22), 8649–8657.CrossRefGoogle Scholar
  24. 24.
    Mujtaba, G., Rizwan, M., Kim, G., & Lee, K. (2018). Removal of nutrients and COD through co-culturing activated sludge and immobilized Chlorella vulgaris. Chemical Engineering Journal, 343, 155–162.CrossRefGoogle Scholar
  25. 25.
    Wang, Y., Ho, S. H., Cheng, C. L., Nagarajan, D., Guo, W. Q., Lin, C., Li, S., Ren, N., & Chang, J. S. (2017). Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production. Bioresource Technology, 242, 7–14.CrossRefGoogle Scholar
  26. 26.
    Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244(Pt 2), 1216–1226.CrossRefGoogle Scholar
  27. 27.
    Alyabyev, A. J., Loseva, N. L., Gordon, L. K., Andreyeva, I. N., Rachimova, G. G., Tribunskih, V. I., Ponomareva, A. A., & Kemp, R. B. (2007). The effect of changes in salinity on the energy yielding processes of Chlorella vulgaris and Dunaliella maritima cells. Thermochimica Acta, 458(1-2), 65–70.CrossRefGoogle Scholar
  28. 28.
    Aponasenko, A. D., Shchur, L. A., & Lopatin, V. N. (2007). Relationship of the chlorophyll content with the biomass and disperse structure of phytoplankton. Doklady Biological Sciences, 412(1), 61–63.CrossRefGoogle Scholar
  29. 29.
    Cho, H. U., Kim, Y. M., & Park, J. M. (2017). Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions. Bioresource Technology, 228, 290–297.CrossRefGoogle Scholar
  30. 30.
    Rashid, N., Park, W. K., & Selvaratnam, T. (2018). Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation. Chemosphere, 194, 67–75.CrossRefGoogle Scholar
  31. 31.
    Nam, K., Lee, H., Heo, S. W., Chang, Y. K., & Han, J. I. (2016). Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. Journal of Applied Phycology, 29, 1171–1178.CrossRefGoogle Scholar
  32. 32.
    Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659–668.CrossRefGoogle Scholar
  33. 33.
    Seyfabadi, J., Ramezanpour, Z., & Amini Khoeyi, Z. (2010). Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. Journal of Applied Phycology, 23, 721–726.CrossRefGoogle Scholar
  34. 34.
    Álvarez-Díaz, P. D., Ruiz, J., Arbib, Z., Barragán, J., Garrido-Pérez, M. C., & Perales, J. A. (2017). Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research, 24, 477–485.CrossRefGoogle Scholar
  35. 35.
    Zhang, Y., Su, H., Zhong, Y., Zhang, C., Shen, Z., Sang, W., Yan, G., & Zhou, X. (2012). The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products. Water Research, 46(17), 5509–5516.CrossRefGoogle Scholar
  36. 36.
    Ma, X., Zhou, W., Fu, Z., Cheng, Y., Min, M., Liu, Y., Zhang, Y., Chen, P., & Ruan, R. (2014). Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresource Technology, 167, 8–13.CrossRefGoogle Scholar
  37. 37.
    Schmidt, J. J., Gagnon, G. A., & Jamieson, R. C. (2016). Microalgae growth and phosphorus uptake in wastewater under simulated cold region conditions. Ecological Engineering, 95, 588–593.CrossRefGoogle Scholar
  38. 38.
    Su, Y., Mennerich, A., & Urban, B. (2012). Synergistic cooperation between wastewater-born algae and activated sludge for wastewater treatment: influence of algae and sludge inoculation ratios. Bioresource Technology, 105, 67–73.CrossRefGoogle Scholar
  39. 39.
    Zemke-White, W. L., Clements, K. D., & Harris, P. J. (2000). Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. Journal of Experimental Marine Biology and Ecology, 245(1), 57–68.CrossRefGoogle Scholar
  40. 40.
    González, C., Marciniak, J., Villaverde, S., García-Encina, P. A., & Muñoz, R. (2008). Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Applied Microbiology and Biotechnology, 80(5), 891–898.CrossRefGoogle Scholar
  41. 41.
    Zhu, L. (2015). Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renewable and Sustainable Energy Reviews, 41, 1376–1384.CrossRefGoogle Scholar
  42. 42.
    Ren, X., Chen, J., Deschênes, J. S., Tremblay, R., & Jolicoeur, M. (2016). Glucose feeding recalibrates carbon flux distribution and favours lipid accumulation in Chlorella protothecoides through cell energetic management. Algal Research, 14, 83–91.CrossRefGoogle Scholar
  43. 43.
    Wang, L., Li, Y., Sommerfeld, M., & Hu, Q. (2013). A flexible culture process for production of the green microalga Scenedesmus dimorphus rich in protein, carbohydrate or lipid. Bioresource Technology, 129, 289–295.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of BiotechnologyJiangsu University of Science and TechnologyZhenjiangPeople’s Republic of China

Personalised recommendations