Growth and Nutrient Utilization of Green Algae in Batch and Semicontinuous Autotrophic Cultivation Under High CO2 Concentration

  • Shan Liu
  • Perova Elvira
  • Yongkang Wang
  • Wei WangEmail author


The growth performance of Chlorella protothecoides, Chlorella pyrenoidosa, and Chlorella sp. in autotrophic cultivation with 10% carbon dioxide (CO2) was evaluated. The biomass production of C. protothecoides, along with its carbon, nitrogen (N), and phosphorus (P) utilization, in batch and semicontinuous autotrophic cultivation with 20% CO2 was also determined. Among the three algae species, C. protothecoides obtained the highest biomass yield (1.08 g/L) and P assimilation (99.4%). Compared with the CO2 flow rate and inoculation ratio in batch cultivation, light intensity considerably improved biomass yield, N and P assimilation, and CO2 utilization. In the semicontinuous cultivation of C. protothecoides, a hydraulic retention time (HRT) of 8 days kept the system at a stable running state, thereby demonstrating that an HRT of 8 days was better than an HRT of 5 days. Among the three N/P ratios for C. protothecoides in semicontinuous cultivation with 20% CO2, 2:1 provided the highest biomass productivity (0.19 g/L/day) and CO2 fixation rate (0.37 g/L/day). Therefore, this lower N/P ratio is more suitable than 10:1 and 50:1 for the growth of C. protothecoides with 20% CO2. Compared with the batch cultivation of C. protothecoides, semicontinuous cultivation improved the CO2 fixation rate (by 1.5–2 times) and CO2 utilization efficiency (by 3–6 times) of C. protothecoides.


Microalgae cultivation Photobioreactor High CO2 concentration Biomass production N/P ratios 



This material is based on a work that is supported by the China Postdoctoral Science Foundation (No. 2016M601050). The authors highly appreciate the critical and constructive comments of the anonymous reviewers, which have helped the authors to improve this manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wang, B., Li, Y., Wu, N., & Lan, C. Q. (2008). CO(2) bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79(5), 707–718.CrossRefGoogle Scholar
  2. 2.
    Westerhoff, P., Hu, Q., Esparza-Soto, M., & Vermaas, W. (2010). Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environmental Technology, 31(5), 523–532.CrossRefGoogle Scholar
  3. 3.
    Hu, Q., K, N., Kawachi, M., Iwasaki, I., & Miyachi, S. (1998). Ultrahigh-cell-density culture of a marine green alga. Applied Microbiology and Biotechnology, 49(6), 655–662.CrossRefGoogle Scholar
  4. 4.
    Pegallapati, A. K., & Nirmalakhandan, N. (2013). Internally illuminated photobioreactor for algal cultivation under carbon dioxide-supplementation: Performance evaluation. Renewable Energy, 56, 129–135.CrossRefGoogle Scholar
  5. 5.
    Fan, H. G., & a., L.-S. (2002). Carbonation–calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial and Engineering Chemistry Research, 41, 4035–4042.Google Scholar
  6. 6.
    Resnik, K. P. (2004). Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx.Pdf. International Journal of Environmental Technology and Management, 4(1/2), 89–104.CrossRefGoogle Scholar
  7. 7.
    de Morais, M. G., & Costa, J. A. (2007). Biofixation of carbon dioxide by spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal of Biotechnology, 129(3), 439–445.CrossRefGoogle Scholar
  8. 8.
    Ragauskas, A. J., Williams, C. K., Davison, B. H., Britovsek, G., Cairney, J., Eckert, C. A., Frederick, W. J., Jr., Hallett, J. P., Leak, D. J., Liotta, C. L., Mielenz, J. R., Murphy, R., Templer, R., & Tschaplinski, T. (2006). The path forward for biofuels and biomaterials. Science, 311(5760), 484–488.CrossRefGoogle Scholar
  9. 9.
    Yanqun Li, M. H., Wu, N., & Lan, C. Q. (2008). Biofuels from microalgae. Biotechnology Progress, 24, 815–820.Google Scholar
  10. 10.
    Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102(1), 100–112.CrossRefGoogle Scholar
  11. 11.
    Kaewkannetra, P., Enmak, P., & Chiu, T. (2012). The effect of CO2 and salinity on the cultivation of Scenedesmus obliquus for biodiesel production. Biotechnology and Bioprocess Engineering, 17(3), 591–597.CrossRefGoogle Scholar
  12. 12.
    de Morais, M. G., & Costa, J. A. (2007). Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnology Letters, 29(9), 1349–1352.CrossRefGoogle Scholar
  13. 13.
    Papazi, A., Makridis, P., Divanach, P., & Kotzabasis, K. (2008). Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiologia Plantarum, 132(3), 338–349.CrossRefGoogle Scholar
  14. 14.
    Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4), 629–636.CrossRefGoogle Scholar
  15. 15.
    Yecong Li, W. Z., Bing, H., Min, M., Chen, P., & Ruan, R. R. (2012). Effect of light intensity on algal biomass accumulation and biodiesel production for Mixotrophic strains Chlorella kessleri and chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnolgy and Bioengineering, 109, 2222–2229.CrossRefGoogle Scholar
  16. 16.
    Hodaifa, G., Martínez, M. E., & Sánchez, S. (2009). Daily doses of light in relation to the growth of Scenedesmus obliquus in diluted three-phase olive mill wastewater. Journal of Chemical Technology & Biotechnology, 84(10), 1550–1558.CrossRefGoogle Scholar
  17. 17.
    Chiu, S. Y., Kao, C. Y., Chen, C. H., Kuan, T. C., Ong, S. C., & Lin, C. S. (2008). Reduction of CO2 by a high-density culture of chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99(9), 3389–3396.CrossRefGoogle Scholar
  18. 18.
    Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833–838.CrossRefGoogle Scholar
  19. 19.
    Ge, Y., Liu, J., & Tian, G. (2011). Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresource Technology, 102(1), 130–134.CrossRefGoogle Scholar
  20. 20.
    Chae, S. R., Hwang, E. J., & Shin, H. S. (2006). Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor. Bioresource Technology, 97(2), 322–329.CrossRefGoogle Scholar
  21. 21.
    Cuaresma, M., Janssen, M., Vilchez, C., & Wijffels, R. H. (2009). Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance. Biotechnology and Bioengineering, 104(2), 352–359.CrossRefGoogle Scholar
  22. 22.
    Martínez Sancho, M. E., Jiménez-Castillo, J. M., & El Yousf, F. (1999). Photoautotrophic consumption of phosphorus by Scenedesmus obliquus in a continuous culture. Influence of light intensity. Process Biochemistry, 34(8), 811–818.CrossRefGoogle Scholar
  23. 23.
    Luz Estela González, R. O. C., & Baena, S. (1997). Efficiency of ammonia and phosphorus removal from a colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technology, 60(3), 259–262.CrossRefGoogle Scholar
  24. 24.
    Larsdotter, K., Jansen, J., & Dalhammar, G. (2010). Phosphorus removal from wastewater by microalgae in Sweden--a year-round perspective. Environmental Technology, 31(2), 117–123.CrossRefGoogle Scholar
  25. 25.
    Ruiz-Marin, A., Mendoza-Espinosa, L. G., & Stephenson, T. (2010). Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresource Technology, 101(1), 58–64.CrossRefGoogle Scholar
  26. 26.
    Shi, J., Podola, B., & Melkonian, M. (2007). Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: An experimental study. Journal of Applied Phycology, 19(5), 417–423.CrossRefGoogle Scholar
  27. 27.
    Aslan, S., & Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64–70.CrossRefGoogle Scholar
  28. 28.
    Mallick, N. (2002). Biotechnological potential of immobilized algae for wastewater N, P and metal removal_ a review.Pdf. BioMetals, 15(4), 377–390.CrossRefGoogle Scholar
  29. 29.
    Martínez, M. E., Sánchez, S., Jiménez, J. M., El Yousfi, F., & Muñoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73, 263–272.CrossRefGoogle Scholar
  30. 30.
    Karseno, T. M., & Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101(3), 223–226.CrossRefGoogle Scholar
  31. 31.
    American Public Health Association.Standard Methods for the Examination of Water and Wastewater. (1995). 19th ed. American Public Health Association,American Water Works Association and Water Pollution Control Federation,Washington, DC.Google Scholar
  32. 32.
    Jiang, Y., Zhang, W., Wang, J., Chen, Y., Shen, S., & Liu, T. (2013). Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresource Technology, 128, 359–364.CrossRefGoogle Scholar
  33. 33.
    Xiong, W. (2009). Analysis of optimal process and metabolic flux for oil sythesis in microalgae. Beijing: Tsinghua University.Google Scholar
  34. 34.
    Li, X. (2011). Coupled Technology of Advanced N, P Removal in Wastewater Treatment and Microalgal Bioenergy Production [D]. Beijing: Tsinghua University.Google Scholar
  35. 35.
    Moazami-Goudarzi, M., & Colman, B. (2012). Changes in carbon uptake mechanisms in two green marine algae by reduced seawater pH. Journal of Experimental Marine Biology and Ecology, 413, 94–99.CrossRefGoogle Scholar
  36. 36.
    de-Bashan, L. E., Hernandez, J. P., Morey, T., & Bashan, Y. (2004). Microalgae growth-promoting bacteria as "helpers" for microalgae: A novel approach for removing ammonium and phosphorus from municipal wastewater. Water Research, 38(2), 466–474.CrossRefGoogle Scholar
  37. 37.
    Lee, K., & Lee, C.-G. (2001). Effect of light/dark cycles on wastewater treatments by microalgae.pdf. Biotechnology and Bioprocess Engineering, 6(3), 194–199.CrossRefGoogle Scholar
  38. 38.
    de-Bashan, L. E., Moreno, M., Hernandez, J.-P., & Bashan, Y. (2002). Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense.pdf. Water Research, 36, 2941–2948.CrossRefGoogle Scholar
  39. 39.
    Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2011). Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology, 102(8), 4945–4953.CrossRefGoogle Scholar
  40. 40.
    Mazzuca Sobczuk, T., García Camacho, F., Camacho Rubio, F., Acién Fernández, F. G., & Molina Grima, E. (2000). Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors.pdf. Biotechnology and Bioengineeing, 67, 465–475.CrossRefGoogle Scholar
  41. 41.
    Zhang, K., Miyachi, S., & Kurano, N. (2001). Evaluation of a vertical flat-plate photobioreactor for outdoor biomass production and carbon dioxide bio-fixation: Effects of reactor dimensions, irradiation and cell concentration on the biomass productivity and irradiation utilization efficiency. Applied Microbiology and Biotechnology, 55(4), 428–433.CrossRefGoogle Scholar
  42. 42.
    James, C., & Ogbonna, H. T. (2000). Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors.pdf. Journal of Applied Phycology, 12, 207–218.CrossRefGoogle Scholar
  43. 43.
    Ho, S. H., Chen, C. Y., & Chang, J. S. (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113, 244–252.CrossRefGoogle Scholar
  44. 44.
    Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A., & Soccol, C. R. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101(15), 5892–5896.CrossRefGoogle Scholar
  45. 45.
    Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3), 3071–3076.CrossRefGoogle Scholar
  46. 46.
    Lam, M. K., & Lee, K. T. (2013). Effect of carbon source towards the growth of Chlorella vulgaris for CO2 bio-mitigation and biodiesel production. International Journal of Greenhouse Gas Control, 14, 169–176.CrossRefGoogle Scholar
  47. 47.
    Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J., & Ruan, R. R. (2010). Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae chlorella sp. Bioresource Technology, 101(8), 2623–2628.CrossRefGoogle Scholar
  48. 48.
    Wang, L., Wang, Y., Chen, P., & Ruan, R. (2010). Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures. Applied Biochemistry and Biotechnology, 162(8), 2324–2332.CrossRefGoogle Scholar
  49. 49.
    Beuckels, A., Smolders, E., & Muylaert, K. (2015). Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Research, 77, 98–106.CrossRefGoogle Scholar
  50. 50.
    Yadav, G., Karemore, A., Dash, S. K., & Sen, R. (2015). Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ. Bioresource Technology, 191, 399–406.CrossRefGoogle Scholar
  51. 51.
    Cheng, L., Zhang, L., Chen, H., & Gao, C. (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and Purification Technology, 50(3), 324–329.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shan Liu
    • 1
  • Perova Elvira
    • 1
  • Yongkang Wang
    • 1
  • Wei Wang
    • 1
    Email author
  1. 1.School of Environment (Key Laboratory of Solid Waste Management and Environment Safety, Ministry of Education of China)Tsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations