Advertisement

Adsorption Study of Acid Soluble Lignin Removal from Sugarcane Bagasse Hydrolysate by a Self-Synthesized Resin for Lipid Production

  • Xue-fang Chen
  • Li-quan Zhang
  • Chao Huang
  • Lian Xiong
  • Hai-long Li
  • Can Wang
  • Cheng Zhao
  • Qian-lin Huang
  • Xin-de ChenEmail author
Article
  • 114 Downloads

Abstract

An adsorption resin CX-6 was synthesized and used for acid soluble lignin (ASL) removal from sugarcane bagasse hydrolysate (SCBH). The adsorption conditions of pH value, amount of adsorbent, initial ASL concentration, and temperature on ASL adsorption were discussed. The results showed the adsorption capacity of ASL was negatively affected by increasing temperature, solution pH, and adsorbent dose, and was positively affected by increasing initial concentration. The maximum adsorption capacity of ASL was 135.3 mg/g at initial ASL concentration 6.46 g/L, adsorption temperature 298 K, and pH 1. Thermodynamic study demonstrated that the adsorption process was spontaneous and exothermic. Equilibrium and kinetics experiments were proved to fit the Freundlich isotherm model and pseudo-second-order model well, respectively. Fermentation experiment showed that the SCBH after combined overliming with resin adsorption as fermentation substrate for microbial lipid production by Trichosporon cutaneum and Trichosporon coremiiforme was as better as that of SCBH by combined overliming with active charcoal adsorption, and more efficient than that of SCBH only by overliming. Moreover, the regeneration experiment indicated that the CX-6 resin is easy to regenerate and its recirculated performance is stable. In conclusion, our results provide a promising adsorbent to detoxify lignocellulose hydrolysate for further fermentation.

Keywords

Acid soluble lignin Sugarcane bagasse hydrolysate Adsorption resin Detoxification Microbial lipid production 

Notes

Funding Information

This work was supported by Pearl River S&T Nova Program of Guangzhou (201610010014, 201710010096), the Project of National Natural Science Foundation of China (21606229, 51876207), the foundation of Key Laboratory of Renewable Energy, Chinese Academy of Sciences (Y707j41001), and the financial support of the Science and Technology Planning Project of Guangdong Province, China (2017A010103043).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhou, H. F., Zhu, J. Y., Luo, X. L., et al. (2013). Bioconversion of beetle-killed lodgepole pine using SPORL: process scale-up design, lignin coproduct, and high solids fermentation without detoxification. Industrial and Engineering Chemistry Research, 52(45), 16057–16065.CrossRefGoogle Scholar
  2. 2.
    Diaz, A. B., Blandino, A., & Caro, I. (2018). Value added products from fermentation of sugars derived from agro-food residues. Trends in Food Science and Technology, 71, 52–64.CrossRefGoogle Scholar
  3. 3.
    Zhong, C., Lau, M. W., Balan, V., Dale, B. E., & Yuan, Y. J. (2009). Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Applied Microbiology and Biotechnology, 84(4), 667–676.CrossRefGoogle Scholar
  4. 4.
    Chen, X. F., Huang, C., Xiong, L., Chen, X. D., & Ma, L. L. (2012). Microbial oil production from corncob acid hydrolysate by Trichosporon cutaneum. Biotechnology Letters, 34(6), 1025–1028.CrossRefGoogle Scholar
  5. 5.
    Li, H. L., Xiong, L., Chen, X. F., et al. (2017). Enhanced enzymatic hydrolysis and acetone-butanol-ethanol fermentation of sugarcane bagasse by combined diluted acid with oxidate ammonolysis pretreatment. Bioresource Technology, 228, 257–263.CrossRefGoogle Scholar
  6. 6.
    Bilal, M., Iqbal, H. M. N., Hu, H. B., et al. (2018). Metabolic engineering and enzyme-mediated processing: a biotechnological venture towards biofuel production—a review. Renewable & Sustainable Energy Reviews, 82, 436–447.CrossRefGoogle Scholar
  7. 7.
    Canilha, L., Chandel, A. K., Milessi, T. S. D., et al. (2012). Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology, 2012, 1–15.  https://doi.org/10.1155/2012/989572.CrossRefGoogle Scholar
  8. 8.
    Moe, S. T., Janga, K. K., Hertzberg, T., et al. (2012). Saccharification of lignocellulosic biomass for biofuel and biorefinery applications—a renaissance for the concentrated acid hydrolysis? Energy Procedia, 20, 50–58.CrossRefGoogle Scholar
  9. 9.
    Kim, S. J., Kim, T. H., & Oh, K. K. (2018). Deacetylation followed by fractionation of yellow poplar sawdust for the production of toxicity-reduced hemicellulosic sugar for ethanol fermentation. Energies, 11(2).  https://doi.org/10.3390/en11020404.
  10. 10.
    Sivagurunathan, P., Kumar, G., Mudhoo, A., Rene, E. R., Saratale, G. D., Kobayashi, T., Xu, K., Kim, S. H., & Kim, D. H. (2017). Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renewable and Sustainable Energy Reviews, 77, 28–42.CrossRefGoogle Scholar
  11. 11.
    Zhai, R., Hu, J. G., & Saddler, J. N. (2018). Extent of enzyme inhibition by phenolics derived from pretreated biomass is significantly influenced by the size and carbonyl group content of the phenolics. ACS Sustainable Chemistry & Engineering, 6(3), 3823–3829.CrossRefGoogle Scholar
  12. 12.
    Almeida, J. R. M., Modig, T., & Petersson, A. (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology & Biotechnology, 82(4), 340–349.CrossRefGoogle Scholar
  13. 13.
    Yu, Y., & Christopher, L. P. (2017). Detoxification of hemicellulose-rich poplar hydrolysate by polymeric resins for improved ethanol fermentability. Fuel, 203, 187–196.CrossRefGoogle Scholar
  14. 14.
    Mills, T. Y., Sandoval, N. R., & Gill, R. T. (2009). Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnology for Biofuels, 2(1), 26.  https://doi.org/10.1186/1754-6834-2-26.CrossRefGoogle Scholar
  15. 15.
    Sindhu, R., Gnansounou, E., Binod, P., & Pandey, A. (2016). Bioconversion of sugarcane crop residue for value added products—an overview. Renewable Energy, 98, 203–215.CrossRefGoogle Scholar
  16. 16.
    Hilares, R. T., Orsi, C. A., Ahmed, M. A., et al. (2017). Low-melanin containing pullulan production from sugarcane bagasse hydrolysate by Aureobasidium pullulans in fermentations assisted by light-emitting diode. Bioresource Technology, 230, 76–81.CrossRefGoogle Scholar
  17. 17.
    Vallejos, M. E., Chade, M., Mereles, E. B., Bengoechea, D. I., Brizuela, J. G., Felissia, F. E., & Area, M. C. (2016). Strategies of detoxification and fermentation for biotechnological production of xylitol from sugarcane bagasse. Industrial Crops and Products, 91, 161–169.CrossRefGoogle Scholar
  18. 18.
    Nichols, N. N., Dien, B. S., & Cotta, M. A. (2010). Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitors. Bioresource Technology, 101(19), 7545–7550.CrossRefGoogle Scholar
  19. 19.
    Zhang, J. A., Zhu, Z. N., Wang, X. F., et al. (2010). Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnology for Biofuels, 3(1), 26.  https://doi.org/10.1186/1754-6834-3-26.CrossRefGoogle Scholar
  20. 20.
    Mohagheghi, A., Ruth, M., & Schell, D. J. (2006). Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochemistry, 41(8), 1806–1811.CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Xia, C. L., Lu, M. M., & Tu, M. B. (2018). Effect of overliming and activated carbon detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates. Biotechnology for Biofuels, 11(1).  https://doi.org/10.1186/s13068-018-1182-0.
  22. 22.
    Hodge, D. B., Andersson, C., Berglund, K. A., & Rova, U. (2009). Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates to succinic acid. Enzyme and Microbial Technology, 44(5), 309–316.CrossRefGoogle Scholar
  23. 23.
    Sainio, T., Turku, I., & Heinonen, J. (2011). Adsorptive removal of fermentation inhibitors from concentrated acid hydrolyzates of lignocellulosic biomass. Bioresource Technology, 102(10), 6048–6057.CrossRefGoogle Scholar
  24. 24.
    Lin, X. Q., Huang, Q. L., Qi, G. X., et al. (2017). Estimation of fixed-bed column parameters and mathematical modeling of breakthrough behaviors for adsorption of levulinic acid from aqueous solution using SY-01 resin. Separation and Purification Technology, 174, 222–231.CrossRefGoogle Scholar
  25. 25.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.. (2008). Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Lab.Google Scholar
  26. 26.
    Singh, D. K., & Mishra, S. (2009). Synthesis and characterization of UO22+-ion imprinted polymer for selective extraction of UO22+. Analytica Chimica Acta, 644(1-2), 42–47.CrossRefGoogle Scholar
  27. 27.
    Lin, X. Q., Huang, Q. L., Qi, G. X., et al. (2017). Adsorption behavior of levulinic acid onto microporous hyper-cross-linked polymers in aqueous solution: equilibrium, thermodynamic, kinetic simulation and fixed-bed column studies. Chemosphere, 171, 231–239.CrossRefGoogle Scholar
  28. 28.
    Chen, X. F., Huang, C., Yang, X. Y., Xiong, L., Chen, X. D., & Ma, L. L. (2013). Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresource Technology, 143, 18–24.CrossRefGoogle Scholar
  29. 29.
    Lin, X. Q., Xiong, L., Huang, C., et al. (2016). Sorption behavior and mechanism investigation of formic acid removal by sorption using an anion-exchange resin. Desalination and Water Treatment, 57, 366–381.Google Scholar
  30. 30.
    Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids part I solids. Journal of the American Chemical Society, 38(11), 2221–2295.CrossRefGoogle Scholar
  31. 31.
    Freundlich, H. (1906). Concerning adsorption in solutions. Zeitschrift Fur Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre, 57, 385–470.Google Scholar
  32. 32.
    Zhou, X. Q., Fan, J. S., Li, N., et al. (2011). Adsorption thermodynamics and kinetics of uridine 5′-monophosphate on a gel-type anion exchange resin. Industrial and Engineering Chemistry Research, 50(15), 9270–9279.CrossRefGoogle Scholar
  33. 33.
    de Carvalho, W., Canilha, L., Mussatto, S. I., Dragone, G., Morales, M. L. V., & Solenzal, A. I. N. (2004). Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells. Journal of Chemical Technology and Biotechnology, 79(8), 863–868.CrossRefGoogle Scholar
  34. 34.
    Huang, C., Wu, H., Li, R. F., & Zong, M. H. (2012). Improving lipid production from bagasse hydrolysate with Trichosporon fermentans by response surface methodology. New Biotechnology, 29(3), 372–378.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xue-fang Chen
    • 1
    • 2
    • 3
  • Li-quan Zhang
    • 1
    • 2
    • 3
    • 4
  • Chao Huang
    • 1
    • 2
    • 3
  • Lian Xiong
    • 1
    • 2
    • 3
  • Hai-long Li
    • 1
    • 2
    • 3
  • Can Wang
    • 1
    • 2
    • 3
  • Cheng Zhao
    • 1
    • 2
    • 3
    • 4
  • Qian-lin Huang
    • 1
    • 2
    • 3
    • 4
  • Xin-de Chen
    • 1
    • 2
    • 3
    Email author
  1. 1.Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.Key Laboratory of Renewable EnergyChinese Academy of SciencesGuangzhouPeople’s Republic of China
  3. 3.Guangdong Key Laboratory of New and Renewable Energy Research and DevelopmentGuangzhouPeople’s Republic of China
  4. 4.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations