Applied Biochemistry and Biotechnology

, Volume 188, Issue 2, pp 481–490 | Cite as

Effects of Heat Treatment on the Structural Characteristics and Antitumor Activity of Polysaccharides from Grifola frondosa

  • Hai-yu Ji
  • Pei Chen
  • Juan Yu
  • Ying-ying Feng
  • An-jun LiuEmail author


This study investigated the effects of heat treatment on structural characteristics and in vitro antitumor activity of polysaccharides from Grifola frondosa. GFP-4 (extracted at 4 °C), GFP-4-80 (80 °C treatment on GFP-4) and GFP-80 (extracted at 80 °C) were prepared, and the chemical composition analysis showed that their total sugar contents were all higher than 90%, high-performance gel-permeation chromatography (HPGPC), ion chromatography (IC) and Fourier-transform infrared spectroscopy (FTIR) results demonstrated that GFP-4 were degraded and denatured after 80 °C heat treatment, MTT and JC-1 results showed that GFP-4 exhibited higher inhibitory effects on HepG2 cells in vitro than GFP-4-80 and GFP-80. Our study suggested that heat treatment at 80 °C on polysaccharides from Grifola frondosa would destroy their structure and attenuate their antitumor effects.


Polysaccharides from Grifola frondosa Heat treatment Structure Antitumor 


Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Oliveira, G. K. F., Silva, E. V. d., Ruthes, A. C., Lião, L. M., Iacomini, M., & Carbonero, E. R. (2018). Chemical structure of a partially 3-O-methylated mannofucogalactan from edible mushroom Grifola frondosa. Carbohydrate Polymers, 187, 110–117.CrossRefGoogle Scholar
  2. 2.
    Kou, L., Du, M., Liu, P., Zhang, B., Zhang, Y., Yang, P., Shang, M., & Wang, X. (2018). Anti-diabetic and anti-nephritic activities of Grifola frondosa mycelium polysaccharides in diet-streptozotocin-induced diabetic rats via modulation on oxidative stress. Applied Biochemistry and Biotechnology, 1–13.Google Scholar
  3. 3.
    Gu, C.-Q., Li, J.-W., Chao, F., Jin, M., Wang, X.-W., & Shen, Z.-Q. (2007). Isolation, identification and function of a novel anti-HSV-1 protein from Grifola frondosa. Antiviral Research, 75(3), 250–257.CrossRefGoogle Scholar
  4. 4.
    Mao, G.-H., Ren, Y., Feng, W.-W., Li, Q., Wu, H.-Y., jin, D., Zhao, T., Xu, C.-Q., Yang, L.-Q., & Wu, X.-Y. (2015). Antitumor and immunomodulatory activity of a water-soluble polysaccharide from Grifola frondosa. Carbohydrate Polymers, 134, 406–412.CrossRefGoogle Scholar
  5. 5.
    Wang, C.-L., Meng, M., Liu, S.-B., Wang, L.-R., Hou, L.-H., & Cao, X.-H. (2013). A chemically sulfated polysaccharide from Grifola frondos induces HepG2 cell apoptosis by notch1–NF-κB pathway. Carbohydrate Polymers, 95(1), 282–287.CrossRefGoogle Scholar
  6. 6.
    He, X., Wang, X., Fang, J., Chang, Y., Ning, N., Guo, H., Huang, L., Huang, X., & Zhao, Z. (2017). Polysaccharides in Grifola frondosa mushroom and their health promoting properties: a review. International Journal of Biological Macromolecules, 101, 910–921.CrossRefGoogle Scholar
  7. 7.
    Liu, A.-J., Yu, J., Ji, H.-Y., Zhang, H.-C., Zhang, Y., & Liu, H.-P. (2018a). Extraction of a novel cold-water-soluble polysaccharide from astragalus membranaceus and its antitumor and immunological activities. Molecules, 23, 62.CrossRefGoogle Scholar
  8. 8.
    Nurmamat, E., Xiao, H., Zhang, Y., & Jiao, Z. (2018). Effects of different temperatures on the chemical structure and antitumor activities of polysaccharides from cordyceps militaris. Polymers, 10(4), 430.CrossRefGoogle Scholar
  9. 9.
    Hromádková, Z., Ebringerová, A., & Valachovic, P. (2002). Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.). Ultrasonics Sonochemistry, 9(1), 37–42.CrossRefGoogle Scholar
  10. 10.
    Chen, R.-Z., Tan, L., Jin, C.-G., Lu, J., Tian, L., Chang, Q.-Q., & Wang, K. (2015). Extraction, isolation, characterization and antioxidant activity of polysaccharides from Astragalus membranaceus. Industrial Crops and Products, 77, 434–443.CrossRefGoogle Scholar
  11. 11.
    Ma, Z.-J., Lu, L., Yang, J.-J., Wang, X.-X., Su, G., Wang, Z.-L., Chen, G.-H., Sun, H.-M., Wang, M.-Y., & Yang, Y. (2018). Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. European Journal of Pharmacology, 821, 1–10.CrossRefGoogle Scholar
  12. 12.
    Ahsani, Z., Mohammadi-Yeganeh, S., Kia, V., Karimkhanloo, H., Zarghami, N., & Paryan, M. (2017). WNT1 gene from WNT signaling pathway is a direct target of miR-122 in hepatocellular carcinoma. Applied Biochemistry and Biotechnology, 181(3), 884–897.CrossRefGoogle Scholar
  13. 13.
    Cui, Y., Lu, P., Song, G., Liu, Q., Zhu, D., & Liu, X. (2016). Involvement of PI3K/Akt, ERK and p38 signaling pathways in emodin-mediated extrinsic and intrinsic human hepatoblastoma cell apoptosis. Food and Chemical Toxicology, 92, 26–37.CrossRefGoogle Scholar
  14. 14.
    Lee, J. S., & Hong, E. K. (2010). Hericium erinaceus enhances doxorubicin-induced apoptosis in human hepatocellular carcinoma cells. Cancer Letters, 297(2), 144–154.CrossRefGoogle Scholar
  15. 15.
    Fitzmorris, P., Shoreibah, M., Anand, B. S., & Singal, A. K. (2015). Management of hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, 141(5), 861–876.CrossRefGoogle Scholar
  16. 16.
    Yang, H., Li, J., Cui, L., Ren, Y., Niu, L., Wang, X., Huang, Y., & Cui, L. (2018). Synergistic cytotoxicity and mechanism of caffeine and lysozyme on hepatoma cell line HepG2. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, 169–174.CrossRefGoogle Scholar
  17. 17.
    Silva, A. M., Miranda, A., Fernandes, E., Santos, S., Fraga, I., Santos, D. L., Dias, A. A., & Bezerra, R. M. (2013). Endopolysaccharides from Ganoderma resinaceum, Phlebia rufa, and Trametes versicolor affect differently the proliferation rate of HepG2 cells. Applied Biochemistry and Biotechnology, 169(6), 1919–1926.CrossRefGoogle Scholar
  18. 18.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.CrossRefGoogle Scholar
  19. 19.
    Li, H., Yu, H., & Zhu, H. (2017). Structure studies of the extracellular polysaccharide from Trichoderma sp. KK19L1 and its antitumor effect via cell cycle arrest and apoptosis. Applied Biochemistry and Biotechnology, 182(1), 128–141.CrossRefGoogle Scholar
  20. 20.
    Yu, J., Ji, H., & Liu, A. (2018a). Preliminary structural characteristics of polysaccharides from pomelo peels and their antitumor mechanism on s180 tumor-bearing mice. Polymers, 10, 419.CrossRefGoogle Scholar
  21. 21.
    Wu, H.-T., He, X.-J., Hong, Y.-K., Ma, T., Xu, Y.-P., & Li, H.-H. (2010). Chemical characterization of Lycium barbarum polysaccharides and its inhibition against liver oxidative injury of high-fat mice. International Journal of Biological Macromolecules, 46(5), 540–543.CrossRefGoogle Scholar
  22. 22.
    Xu, P., Yuan, R., Hou, G., Li, J., & Ye, M. (2018). Structural characterization and in vitro antitumor activity of a novel exopolysaccharide from Lachnum YM130. Applied Biochemistry and Biotechnology, 185(2), 541–554.CrossRefGoogle Scholar
  23. 23.
    Zhang, Y., Wu, Y.-T., Zheng, W., Han, X.-X., Jiang, Y.-H., Hu, P.-L., Tang, Z.-X., & Shi, L.-E. (2017). The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae. Journal of Functional Foods, 38, 273–279.CrossRefGoogle Scholar
  24. 24.
    Liu, Y., Huang, G., & Hu, J. (2018b). Extraction, characterisation and antioxidant activity of polysaccharides from Chinese watermelon. International Journal of Biological Macromolecules, 111, 1304–1307.CrossRefGoogle Scholar
  25. 25.
    Ma, G., Yang, W., Mariga, A. M., Fang, Y., Ma, N., Pei, F., & Hu, Q. (2014). Purification, characterization and antitumor activity of polysaccharides from Pleurotus eryngii residue. Carbohydrate Polymers, 114, 297–305.CrossRefGoogle Scholar
  26. 26.
    Chen, Y., Xie, M.-Y., Nie, S.-P., Li, C., & Wang, Y.-X. (2008). Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chemistry, 107(1), 231–241.CrossRefGoogle Scholar
  27. 27.
    Gong, Y., Zhang, J., Gao, F., Zhou, J., Xiang, Z., Zhou, C., Wan, L., & Chen, J. (2017). Structure features and in vitro hypoglycemic activities of polysaccharides from different species of Maidong. Carbohydrate Polymers, 173, 215–222.CrossRefGoogle Scholar
  28. 28.
    Wang, Y., Wei, X., Wang, F., Xu, J., Tang, X., & Li, N. (2018). Structural characterization and antioxidant activity of polysaccharide from ginger. International Journal of Biological Macromolecules, 111, 862–869.CrossRefGoogle Scholar
  29. 29.
    Yang, L., & Zhang, L.-M. (2009). Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydrate Polymers, 76(3), 349–361.CrossRefGoogle Scholar
  30. 30.
    Pascua-Maestro, R., Corraliza-Gomez, M., Diez-Hermano, S., Perez-Segurado, C., Ganfornina, M. D., & Sanchez, D. (2018). The MTT-formazan assay: complementary technical approaches and in vivo validation in Drosophila larvae. Acta Histochemica, 120(3), 179–186.CrossRefGoogle Scholar
  31. 31.
    Jia, Z., Yang, H. H., Liu, Y.-J., & Wang, X.-Z. (2018). Synthetic dibenzoxanthene derivatives induce apoptosis through mitochondrial pathway in human hepatocellular cancer cells. Applied Biochemistry and Biotechnology, 186(1), 145–160.CrossRefGoogle Scholar
  32. 32.
    Tan, K.-T., Li, S., Li, Y. R., Cheng, S.-L., Lin, S.-H., & Tung, Y.-T. (2018). Synergistic anticancer effect of a combination of paclitaxel and 5-demethylnobiletin against lung cancer cell line in vitro and in vivo. Applied Biochemistry and Biotechnology, 1–16.Google Scholar
  33. 33.
    Soltan-Dallal, M. M., Validi, M., Douraghi, M., Fallah-Mehrabadi, J., & Lormohammadi, L. (2017). Evaluation the cytotoxic effect of cytotoxin-producing Klebsiella oxytoca isolates on the HEp-2 cell line by MTT assay. Microbial Pathogenesis, 113, 416–420.CrossRefGoogle Scholar
  34. 34.
    Abel, S. D. A., & Baird, S. K. (2018). Honey is cytotoxic towards prostate cancer cells but interacts with the MTT reagent: considerations for the choice of cell viability assay. Food Chemistry, 241, 70–78.CrossRefGoogle Scholar
  35. 35.
    Gelen, V., Şengül, E., Gedikli, S., Atila, G., Uslu, H., & Makav, M. (2017). The protective effect of rutin and quercetin on 5-FU-induced hepatotoxicity in rats. Asian Pacific Journal of Tropical Biomedicine, 7(7), 647–653.CrossRefGoogle Scholar
  36. 36.
    Yassin, A. M., El-Deeb, N. M., Metwaly, A. M., El Fawal, G. F., Radwan, M. M., & Hafez, E. E. (2017). Induction of apoptosis in human cancer cells through extrinsic and intrinsic pathways by Balanites aegyptiaca Furostanol saponins and saponin-coated silver nanoparticles. Applied Biochemistry and Biotechnology, 182(4), 1675–1693.CrossRefGoogle Scholar
  37. 37.
    Faron, J., Bernaś, T., Sas-Nowosielska, H., & Klag, J. (2015). Analysis of the behavior of mitochondria in the ovaries of the earthworm Dendrobaena veneta Rosa 1839. PLoS One, 10(2), e0117187.CrossRefGoogle Scholar
  38. 38.
    Małota, K., Student, S., & Świątek, P. (2018). Low mitochondrial activity within developing earthworm male germ-line cysts revealed by JC-1. Mitochondrion.Google Scholar
  39. 39.
    Yu, J., Dong, X., Wang, L., Ji, H., & Liu, A. (2018b). Antitumor effects of seleno-β-lactoglobulin (Se-β-Lg) against human gastric cancer MGC-803 cells. European Journal of Pharmacology, 833, 109–115.CrossRefGoogle Scholar
  40. 40.
    Yang, H.-H., Zhang, C., Lai, S.-H., Zeng, C.-C., Liu, Y.-J., & Wang, X.-Z. (2017). Isoliquiritigenin induces cytotoxicity in PC-12 cells in vitro. Applied Biochemistry and Biotechnology, 183(4), 1173–1190.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hai-yu Ji
    • 1
    • 2
  • Pei Chen
    • 1
  • Juan Yu
    • 1
    • 2
  • Ying-ying Feng
    • 1
    • 2
  • An-jun Liu
    • 1
    Email author
  1. 1.Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and BiotechnologyTianjin University of Science and TechnologyTianjinPeople’s Republic of China
  2. 2.QingYunTang Biotech (Beijing) Co., Ltd.BeijingChina

Personalised recommendations