Advertisement

Applied Biochemistry and Biotechnology

, Volume 188, Issue 2, pp 527–539 | Cite as

Recovery and Purity of High Molar Mass Bio-hyaluronic Acid Via Precipitation Strategies Modulated by pH and Sodium Chloride

  • André D. D. Cavalcanti
  • Bruna A. G. Melo
  • Rhelvis C. Oliveira
  • Maria H. A. SantanaEmail author
Article

Abstract

The effects of ethanol/broth proportions and the number of steps at varying pH in the presence or absence of sodium chloride (NaCl) were studied as precipitation strategies for the recovery and purification of high molar mass bio-hyaluronic acid (Bio-HA). Bio-HA was synthesized by Streptococcus zooepidemicus in a culture medium containing glucose and soy peptones. A single-step precipitation was more attractive than multistep precipitation in terms of recovery and purity as well as decreased use of ethanol. The best conditions in the absence and presence of salt were 2:1 ethanol/broth (v/v) at pH 4 (55.0 ± 0.2% purity and 85.0 ± 0.7% recovery) and 2:1 ethanol/broth (v/v) at pH 7 + 2 mol L−1 NaCl (59.0 ± 0.9% purity and 82.0 ± 4.3% recovery). Dynamic light scattering (DLS) spectra showed different particle sizes as a consequence of the changes in the molecular structure of HA, mainly with changes in pH. Although slight changes in distribution were observed, the average HA molar mass was not affected by the precipitation strategy, remaining on the order of 105 Da. Therefore, pH and NaCl modulated the precipitation performance of HA. These findings are relevant to further optimizing the precipitation step, thus minimizing costs in the later stages of HA purification.

Keywords

Hyaluronic acid Ethanol precipitation Soy peptone Fermentation broth Downstream process 

Notes

Funding

This work was supported by the following Brazilian financial institutions: Conselho Nacional de Pesquisa [CNPq-Project no: 142480/2014-2] and Fundação de Amparo a Pesquisa do Estado de São Paulo [FAPESP–Project no: 2015/23134-8].

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Chong, B. F., Blank, L. M., Mclaughlin, R., & Nielsen, L. K. (2005). Microbial hyaluronic acid production. Applied Microbiology and Biotechnology, 66(4), 341–351.CrossRefGoogle Scholar
  2. 2.
    Kogan, G., Šoltés, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters, 29, 17–25.CrossRefGoogle Scholar
  3. 3.
    Liang, T. W., Wu, C. C., Cheng, W. T., Chen, Y. C., Wang, C. L., Wang, I. L., & Wang, S. L. (2014). Exopolysaccharides and antimicrobial biosurfactants produced by Paenibacillus macerans TKU029. Applied Biochemistry and Biotechnology, 172(2), 933–950.CrossRefGoogle Scholar
  4. 4.
    Cui, Y., Li, Y., Duan, Q., & Kakuchi, T. (2013). Preparation of hyaluronic acid micro-hydrogel by biotin-avidin-specific bonding for doxorubicin-targeted delivery. Applied Biochemistry and Biotechnology, 169(1), 239–249.CrossRefGoogle Scholar
  5. 5.
    Choi, S. B., Lew, L. C., Hor, K. C., & Liong, M. T. (2014). Fe2+ and Cu2+ increase the production of hyaluronic acid by Lactobacilli via affecting different stages of the pentose phosphate pathyway. Applied Biochemistry and Biotechnology, 173(1), 129–142.CrossRefGoogle Scholar
  6. 6.
    Pires, A. M. B., & Santana, M. H. A. (2010). Metabolic effects of the initial glucose concentration on microbial production of hyaluronic acid. Applied Biochemistry and Biotechnology, 162(6), 1751–1761.CrossRefGoogle Scholar
  7. 7.
    Benedini, L. J., & Santana, M. H. A. (2013). Effects of soy peptone on the inoculum preparation of Streptococcus zooepidemicus for production of hyaluronic acid. Bioresource Technology, 130, 798–800.CrossRefGoogle Scholar
  8. 8.
    Scopes, R. K. (1988). Protein purification (2nd ed.). New York: Springer-verlag Inc.Google Scholar
  9. 9.
    Ferrari, F. A., Motta, F. L., Bastos, R. G., & Santana, M. H. A. (2013). The solid-state cultivation of Streptococcus zooepidemicus in polyurethane foam as a strategy for the production of hyaluronic acid. Applied Biochemistry and Biotechnology, 170(6), 1491–1502.CrossRefGoogle Scholar
  10. 10.
    Pan, N. C., Pereira, H. C. B., Corradi, M. L., Vasconcelos, A. F. D., & Celligoi, M. A. P. C. (2017). Improvement production of hyaluronic acid by Streptococcus zooepidemicus in sugarcane molasses. Applied Biochemistry and Biotechnology, 182(1), 276–293.CrossRefGoogle Scholar
  11. 11.
    Han, H. Y., Jang, S. H., Kim, E. C., Park, J. K., Han, Y. J., Lee, C., Park, H. S., Kim, Y. C. & Park, H. J. (2004) Patent WO2004016771.Google Scholar
  12. 12.
    Won, T. Y., Lee, C. & Seo, S. H. (2008) Patent WO2008062998.Google Scholar
  13. 13.
    Kim, T. H., Kim, H. L., Park, S. Y. & Jang, D. K. (2008) Patent US20080194810.Google Scholar
  14. 14.
    Murado, M. A., Montemayor, M. I., Cabo, M. L., Vázquez, J. A., & González, M. P. (2012). Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food and Bioproducts Processing, 90(3), 491–498.CrossRefGoogle Scholar
  15. 15.
    Nimrod, A., Greenman, B., Kanner, D., Landsberg, M. & Beck, Y. (1988) United States Patent 4780414.Google Scholar
  16. 16.
    Sousa, A. S., Guimarães, A. P., Gonçalves, C. V., Silva, I. J., Cavalcante, C. L., & Azevedo, D. C. S. (2009). Purification and characterization of microbial hyaluronic acid by solvent precipitation and size-exclusion chromatography. Separation Science and Technology, 44(4), 906–923.CrossRefGoogle Scholar
  17. 17.
    Soltes, L., & Mendichi, R. (2003). Molecular characterization of two host-guest associating hyaluronan derivatives. Biomedical Chromatography, 17(6), 376–384.CrossRefGoogle Scholar
  18. 18.
    Gatej, I., Popa, M., & Rinaudo, M. (2004). Role of the pH on Hyaluronan behavior in aqueous solution. Biomacromolecules, 6, 61–67.CrossRefGoogle Scholar
  19. 19.
    Chakrabarti, B., & Balazs, E. A. (1973). Optical properties of hyaluronic acid: Ultraviolet circular dichroism and optical rotatory dispersion. Journal of Molecular Biology, 78(1), 135–141.CrossRefGoogle Scholar
  20. 20.
    Staskus, P. W., & Johnson, W. C. (1988). Double-stranded structure for hyaluronic acid in ethanol-aqueous solution as revealed by circular dichroism of oligomers. Biochemistry, 27(5), 1528–1534.CrossRefGoogle Scholar
  21. 21.
    Cowman, M. K., & Matsuoka, S. (2005). Experimental approaches to hyaluronan structure. Carbohydrate Research, 340(5), 791–809.CrossRefGoogle Scholar
  22. 22.
    Reddy, K. J., & Karunakaran, K. T. (2013). Purification and characterization of hyaluronic acid produced by Streptococcus zooepidemicus strain 3523-7. Journal of BioScience and Biotechnology, 2, 173–179.Google Scholar
  23. 23.
    Rangaswamy, V., & Jain, D. (2008). An efficient process for production and purification of hyaluronic acid from Streptococcus equi subsp. zooepidemicus. Biotechnology Letters, 30(3), 493–496.CrossRefGoogle Scholar
  24. 24.
    Chen, Y. H., & Wang, Q. (2009). Establishment of CTAB Turbidimetric method to determine hyaluronic acid content in fermentation broth. Carbohydrate Polymers, 78(1), 178–181.CrossRefGoogle Scholar
  25. 25.
    Callou, K. R. A., Sadigov, S., Lajolo, F. M., & Genovese, M. I. (2010). Isoflavones and antioxidant capacity of Comercial soy-based beverages: Effect of storage. Journal of Agricultural and Food Chemistry, 58(7), 4284–4291.CrossRefGoogle Scholar
  26. 26.
    Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., & Klenk, D. C. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150(1), 76–85.CrossRefGoogle Scholar
  27. 27.
    Veja, J. A. (2017). Biología y bases racionales para el uso terapéutico del hialuronano en las artropatías: el tamaño es importante. J Cartillage Disease, 4, 11–18.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Development of Biotechnological/Microbial Processes Laboratory, School of Chemical EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations