Advertisement

Applied Biochemistry and Biotechnology

, Volume 185, Issue 3, pp 778–785 | Cite as

Decoding Selection Bias Imparted by Unpaired Cysteines: a Tug of War Between Expression and Affinity

  • B. Vijayalakshmi Ayyar
  • Stephen Hearty
  • Richard O’Kennedy
Article

Abstract

In a recombinant antibody scFv format, the presence of an unpaired cysteine (Cys) is implicated in reduced soluble expression and inefficient presentation in phage display. Compared to other species, antibodies derived from rabbits are more likely to contain this unpaired Cys residue at position 80 (Cys80), when generated in a scFv format. In a screening campaign to isolate rabbit scFv against cardiac troponin I (cTnI), it was found that, a large proportion of isolated cTnI-specific clones contained unpaired Cys80. To analyze the factors that led to the selection of anti-cTnI Cys80 scFv, after five rounds of biopanning, the biopanning experiments were repeated with a Cys80 scFv (MG4Cys), its alanine variant (MG4Ala), and an irrelevant high expressing scFv control. It was found that the selection and subsequent enrichment of MG4Cys scFv was ousted by the superior expressing variant MG4Ala, indicating that the Cys80 scFv was selected primarily due to its affinity. It is evident that phage-based selection is influenced by specific sequence characteristics affecting the expression as well as the binding specificity and this needs to be taken into account for selection of optimal antibody derivatives.

Keywords

Rabbit antibodies scFv Unpaired cysteine Phage display Biopanning Expression bias 

Notes

Acknowledgments

The authors thank Prof. Carlos F. Barbas III (Scripps Research Institute) for kindly providing the pComb3 vector series used in this study.

Funding Information

All authors were supported by the Science Foundation Ireland (grants 05/CE3/B754 and 10/CE/B1821).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    ‘t Hoen, P. A. C., Jirka, S. M. G., ten Broeke, B. R., Schultes, E. A., Aguilera, B., Pang, K. H., Heemskerk, H., Aartsma-Rus, A., van Ommen, G. J., & den Dunnen, J. T. (2012). Phage display screening without repetitious selection rounds. Analytical Biochemistry, 421, 622–631.  https://doi.org/10.1016/j.ab.2011.11.005.
  2. 2.
    Albrecht, H., DeNardo, G. L., & DeNardo, S. J. (2006). Monospecific bivalent scFv-SH: Effects of linker length and location of an engineered cysteine on production, antigen binding activity and free SH accessibility. Journal of Immunological Methods, 310(1-2), 100–116.  https://doi.org/10.1016/j.jim.2005.12.012.CrossRefGoogle Scholar
  3. 3.
    Ayyar, B. V., Hearty, S., & O’Kennedy, R. (2015). Facile domain rearrangement abrogates expression recalcitrance in a rabbit scFv. Applied Microbiology and Biotechnology, 99(6), 2693–2703.  https://doi.org/10.1007/s00253-014-6268-4.CrossRefGoogle Scholar
  4. 4.
    Chi, X. S., Landt, Y., Crimmins, D. L., Dieckgraefe, B. K., & Ladenson, J. H. (2002). Isolation and characterization of rabbit single chain antibodies to human Reg Iα protein. Journal of Immunological Methods, 266(1-2), 197–207.  https://doi.org/10.1016/S0022-1759(02)00117-5.CrossRefGoogle Scholar
  5. 5.
    Ewert, S., Huber, T., Honegger, A., & Plückthun, A. (2003). Biophysical properties of human antibody variable domains. Journal of Molecular Biology, 325(3), 531–553.  https://doi.org/10.1016/S0022-2836(02)01237-8.CrossRefGoogle Scholar
  6. 6.
    Ge, X., Mazor, Y., Hunicke-Smith, S. P., Ellington, A. D., & Georgiou, G. (2010). Rapid construction and characterization of synthetic antibody libraries without DNA amplification. Biotechnology and Bioengineering, 106(3), 347–357.  https://doi.org/10.1002/bit.22712.Google Scholar
  7. 7.
    Graur, D., Duret, L., & Gouy, M. (1996). Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature, 379(6563), 333–335.  https://doi.org/10.1038/379333a0.CrossRefGoogle Scholar
  8. 8.
    Hearty, S., & O’Kennedy, R. (2011). Exploiting recombinant antibodies in point-of-care (POC) diagnostics: The combinatorial advantage. Bioeng Bugs, 2(3), 182–186.  https://doi.org/10.4161/bbug.2.3.15656.CrossRefGoogle Scholar
  9. 9.
    Huang, J. X., Bishop-Hurley, S. L., & Cooper, M. A. (2012). Development of anti-infectives using phage display: Biological agents against bacteria, viruses, and parasites. Antimicrobial Agents and Chemotherapy, 56(9), 4569–4582.  https://doi.org/10.1128/AAC.00567-12.CrossRefGoogle Scholar
  10. 10.
    Hust, M., Jostock, T., Menzel, C., Voedisch, B., Mohr, A., Brenneis, M., Kirsch, M. I., Meier, D., & Dübel, S. (2007). Single chain Fab (scFab) fragment. BMC Biotechnology, 7(1), 14.  https://doi.org/10.1186/1472-6750-7-14.CrossRefGoogle Scholar
  11. 11.
    Kwong, P. D., & Mascola, J. R. (2012). Human antibodies that neutralize HIV-1: Identification, structures, and B cell ontogenies. Immunity, 37(3), 412–425.  https://doi.org/10.1016/j.immuni.2012.08.012.CrossRefGoogle Scholar
  12. 12.
    Li, W. H., Gouy, M., Sharp, P. M., O’hUigin, C., & Yang, Y. W. (1990). Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proceedings of the National Academy of Sciences of the United States of America, 87(17), 6703–6707.  https://doi.org/10.1073/pnas.87.17.6703.CrossRefGoogle Scholar
  13. 13.
    Li, Y., Cockburn, W., Kilpatrick, J. B., & Whitelam, G. C. (2000). High affinity scFvs from a single rabbit immunized with multiple haptens. Biochemical and Biophysical Research Communications, 268(2), 398–404.  https://doi.org/10.1006/bbrc.2000.2129.CrossRefGoogle Scholar
  14. 14.
    Mage, R. G., Lanning, D., & Knight, K. L. (2006). B cell and antibody repertoire development in rabbits: The requirement of gut-associated lymphoid tissues. Developmental and Comparative Immunology, 30(1-2), 137–153.  https://doi.org/10.1016/j.dci.2005.06.017.CrossRefGoogle Scholar
  15. 15.
    McCafferty, J., Fitzgerald, K. J., Earnshaw, J., Chiswell, D. J., Link, J., Smith, R., & Kenten, J. (1994). Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display. Applied Biochemistry and Biotechnology, 47(2-3), 157–173.  https://doi.org/10.1007/BF02787932.CrossRefGoogle Scholar
  16. 16.
    McCartney-Francis, N., Skurla, R. M., Mage, R. G., & Bernstein, K. E. (1984). Kappa-chain allotypes and isotypes in the rabbit: cDNA sequences of clones encoding b9 suggest an evolutionary pathway and possible role of the interdomain disulfide bond in quantitative allotype expression. Proceedings of the National Academy of Sciences of the United States of America, 81(6), 1794–1798.  https://doi.org/10.1073/pnas.81.6.1794.CrossRefGoogle Scholar
  17. 17.
    McDonnell, B., Hearty, S., Finlay, W. J. J., & O’Kennedy, R. (2011). A high-affinity recombinant antibody permits rapid and sensitive direct detection of myeloperoxidase. Analytical Biochemistry, 410(1), 1–6.  https://doi.org/10.1016/j.ab.2010.09.039.CrossRefGoogle Scholar
  18. 18.
    Novacek, M. J. (1996). Where do rabbits and kin fit in? Nature, 379(6563), 299–300.  https://doi.org/10.1038/379299a0.CrossRefGoogle Scholar
  19. 19.
    Pan, R., Sampson, J. M., Chen, Y., Vaine, M., Wang, S., Lu, S., & Kong, X.-P. (2013). Rabbit anti-HIV-1 monoclonal antibodies raised by immunization can mimic the antigen-binding modes of antibodies derived from HIV-1-infected humans. Journal of Virology, 87(18), 10221–10231.  https://doi.org/10.1128/JVI.00843-13.CrossRefGoogle Scholar
  20. 20.
    Popkov, M., Mage, R. G., Alexander, C. B., Thundivalappil, S., Barbas Iii, C. F., & Rader, C. (2003). Rabbit immune repertoires as sources for therapeutic monoclonal antibodies: The impact of kappa allotype-correlated variation in cysteine content on antibody libraries selected by phage display. Journal of Molecular Biology, 325(2), 325–335.  https://doi.org/10.1016/S0022-2836(02)01232-9.CrossRefGoogle Scholar
  21. 21.
    Popkov, M., Jendreyko, N., Gonzalez-Sapienza, G., Mage, R. G., Rader, C., & Barbas Iii, C. F. (2004). Human/mouse cross-reactive anti-VEGF receptor 2 recombinant antibodies selected from an immune b9 allotype rabbit antibody library. Journal of Immunological Methods, 288(1-2), 149–164.  https://doi.org/10.1016/j.jim.2004.03.005.CrossRefGoogle Scholar
  22. 22.
    Rader, C., Ritter, G., Nathan, S., Elia, M., Gout, I., Jungbluth, A. A., Cohen, L. S., Welt, S., Old, L. J., & Barbas, C. F. (2000). The rabbit antibody repertoire as a novel source for the generation of therapeutic human antibodies. The Journal of Biological Chemistry, 275(18), 13668–13676.  https://doi.org/10.1074/jbc.275.18.13668.CrossRefGoogle Scholar
  23. 23.
    Ros, F., Puels, J., Reichenberger, N., van Schooten, W., Buelow, R., & Platzer, J. (2004). Sequence analysis of 0.5 Mb of the rabbit germline immunoglobulin heavy chain locus. Gene, 330, 49–59.  https://doi.org/10.1016/j.gene.2003.12.037.CrossRefGoogle Scholar
  24. 24.
    Ros, F., Reichenberger, N., Dragicevic, T., Van Schooten, W. C. A., Buelow, R., & Platzer, J. (2005). Sequence analysis of 0.4 megabases of the rabbit germline immunoglobulin kappa1 light chain locus. Animal Genetics, 36(1), 51–57.  https://doi.org/10.1111/j.1365-2052.2004.01221.x.CrossRefGoogle Scholar
  25. 25.
    Schmiedl, A., Breitling, F., Winter, C. H., Queitsch, I., & Dübel, S. (2000). Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli. Journal of Immunological Methods, 242(1-2), 101–114.  https://doi.org/10.1016/S0022-1759(00)00243-X.CrossRefGoogle Scholar
  26. 26.
    Shen, Z., Mernaugh, R. L., Yan, H., Yu, L., Zhang, Y., & Zeng, X. (2005). Engineered recombinant single-chain fragment variable antibody for immunosensors. Analytical Chemistry, 77(21), 6834–6842.  https://doi.org/10.1021/ac0507690.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018
corrected publication March/2018

Authors and Affiliations

  1. 1.Biomedical Diagnostics Institute, National Centre for Sensor ResearchDublin City UniversityDublin 9Ireland
  2. 2.School of BiotechnologyDublin City UniversityDublin 9Ireland
  3. 3.Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonUSA
  4. 4.Immunocore LtdAbingdonUK
  5. 5.Research Complex, Hamid Bin Khalifa UniversityDohaQatar

Personalised recommendations