Applied Biochemistry and Biotechnology

, Volume 185, Issue 3, pp 799–814 | Cite as

An “All-In-One” Pharmacophoric Architecture for the Discovery of Potential Broad-Spectrum Anti-Flavivirus Drugs

  • Nomagugu B. Ncube
  • Pritika Ramharack
  • Mahmoud E. S. SolimanEmail author


A precipitous increase in the number of flaviviral infections has been noted over the last 5 years. Despite these outbreaks, treatment protocols for infected individuals remain ambiguous. Numerous studies have identified NITD008 as a potent flavivirus inhibitor; however, clinical testing was dismissed due to undesirable toxic effects. The binding landscape of NITD008 in complex with five detrimental flaviviruses at the RNA-dependent RNA polymerase active sites was explored. An “all-in-one” pharmacophore model was created for the design of small molecules that may inhibit a broad spectrum of flaviviruses. This pharmacophore model approach serves as a robust cornerstone, thus assisting medicinal experts in the composition of multifunctional inhibitors that will eliminate cross-resistance and toxicity and enhance patient adherence.


Flaviviridae Pharmacophore model Free-binding energy Binding landscape NITD008 RdRp 


Funding Information

The authors would like to thank the Centre of High Performance Computing in Cape Town ( for the computational facility and the National Research Foundation (NRF) of South Africa and the School of Health Sciences, UKZN, for the scholarships and financial support.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

12010_2017_2690_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 17 kb)


  1. 1.
    Calisher, C. H., & Gould, E. A. (2003). Taxonomy of the virus family Flaviviridae. Advances in Virus Research, 59, 1–19.CrossRefPubMedGoogle Scholar
  2. 2.
    Baharuddin, A., Hassan, A. A., Sheng, G. C., Nasir, S. B., Othman, S., Yusof, R., & Rahman, N. A. (2014). Current approaches in antiviral drug discovery against the Flaviviridae family. Current Pharmaceutical Design, 20(21), 3428–3444.CrossRefPubMedGoogle Scholar
  3. 3.
    Harris, E., Holden, K. L., Edgil, D., Polacek, C., & Clyde, K. (2008). Molecular biology of Flaviviruses, in New Treatment Strategies for Dengue and Other Flaviviral Diseases: Norvatis Foundation Symposium 277 (eds G. Bock and J. Goode). Chichester: John Wiley & Sons, Ltd.Google Scholar
  4. 4.
    Pijlman, G. P. (2014). Flavivirus RNAi suppression: decoding non-coding RNA. Current Opinion in Virology, 7(1), 55–60.CrossRefPubMedGoogle Scholar
  5. 5.
    Ramharack, P., & Soliman, M. E. S. (2016). Zika virus drug targets: a missing link in drug design and discovery—a route map to fill the gap. RSC Advances, 6(73), 68719–68731.CrossRefGoogle Scholar
  6. 6.
    Best, S. M. (2016). Flaviviruses. Current Biology, 26(24), R1258–R1260.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhao, Y., Soh, T. S., Zheng, J., Chan, K. W. K., Phoo, W. W., Lee, C. C., & Luo, D. (2015). A crystal structure of the dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathogens, 11(3), 1–27.CrossRefGoogle Scholar
  8. 8.
    Lequime, S., & Lambrechts, L. (2017). Discovery of flavivirus-derived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles -associated insect-specific flaviviruses. Virus Evolution, 3(1), 1–35.CrossRefGoogle Scholar
  9. 9.
    Solomon, T., & Mallewa, M. (2001). Dengue and other emerging flaviviruses. Journal of Infection, 5(1), 1–35.Google Scholar
  10. 10.
    Diosa-Toro, M., Urcuqui-Inchima, S., & Smit, J. M. (2013). Arthropod-borne Flaviviruses and RNA interference. Seeking new approaches for antiviral therapy. Advances in Virus Research, 85, 91–111.CrossRefPubMedGoogle Scholar
  11. 11.
    Lo, M. K., Shi, P. Y., Chen, Y. L., Flint, M., & Spiropoulou, C. F. (2016). In vitro antiviral activity of adenosine analog NITD008 against tick-borne flaviviruses. Antiviral Research, 130, 46–49.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Awasthi, S. (2016). Zika virus: prospects for the development of vaccine and antiviral agents. Journal of Antivirals & Antiretrovirals, 8(1), 8–10.CrossRefGoogle Scholar
  13. 13.
    Kore, P. P., Mutha, M. M., Antre, R. V., Oswal, R. J., & Kshirsagar, S. S. (2012). Computer-aided drug design: an innovative tool for modeling. Open Journal of Medicinal Chemistry, 2(December), 139–148.CrossRefGoogle Scholar
  14. 14.
    Lill, M. A., & Danielson, M. L. (2011). Computer-aided drug design platform using PyMOL. Journal of Computer-Aided Molecular Design, 25(1), 13–19.CrossRefPubMedGoogle Scholar
  15. 15.
    Huang, H. J., Yu, H. W., Chen, C. Y., Hsu, C. H., Chen, H. Y., Lee, K. J., & Chen, C. Y. C. (2010). Current developments of computer-aided drug design. Journal of the Taiwan Institute of Chemical Engineers, 41(6), 623–635.CrossRefGoogle Scholar
  16. 16.
    Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2013). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395.CrossRefPubMedGoogle Scholar
  17. 17.
    Hung, C.-L., & Chen, C.-C. (2014). Computational approaches for drug discovery. Drug Development Research, 75(6), 412–418.CrossRefPubMedGoogle Scholar
  18. 18.
    Tian, H., Ji, X., Yang, X., Zhang, Z., Lu, Z., Yang, K., & Rao, Z. (2016). Structural basis of Zika virus helicase in recognizing its substrates. Protein and Cell, 7(8), 562–570.CrossRefPubMedGoogle Scholar
  19. 19.
    Deng, Y. Q., Zhang, N. N., Li, C. F., Tian, M., Hao, J. N., Xie, X. P., & Qin, C. F. (2016). Adenosine analog NITD008 is a potent inhibitor of zika virus. Open Forum Infectious Diseases, 3(4), 1–4.CrossRefGoogle Scholar
  20. 20.
    Nelson, J., Roe, K., Orillo, B., Shi, P. Y., & Verma, S. (2015). Combined treatment of adenosine nucleoside inhibitor NITD008 and histone deacetylase inhibitor vorinostat represents an immunotherapy strategy to ameliorate West Nile virus infection. Antiviral Research, 122, 39–45.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Petersen, L. R., Jamieson, D. J., Powers, A. M., & Honein, M. A. (2016). Zika virus. The New England Journal of Medicine, 374(16), 1552–1563.CrossRefPubMedGoogle Scholar
  22. 22.
    Basarab, M., Bowman, C., Aarons, E. J., & Cropley, I. (2016). Zika virus. BMJ, 352.
  23. 23.
    WHO. (2016). WHO | The History of Zika Virus. WHO. Accessed on 23/07/17.Google Scholar
  24. 24.
    Daina, A., & Zoete, V. (2016). A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117–1121.Google Scholar
  25. 25.
    Malet, H., Egloff, M.-P., Selisko, B., Butcher, R. E., Wright, P. J., Roberts, M., et al. (2007). Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. The Journal of Biological Chemistry, 282(14), 10678–10689.CrossRefPubMedGoogle Scholar
  26. 26.
    Source, S. L., Noble, C. G., Lim, S. P., Chen, Y.-L., Liew, C. W., Yap, L., et al. (2013). Conformational flexibility of the dengue virus RNA-dependent RNA polymerase revealed by a complex with an inhibitor. Journal of Virology, 87(9), 5291–5295.CrossRefGoogle Scholar
  27. 27.
    Lu, G., & Gong, P. (2013). Crystal structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase Interface. PLoS Pathogens, 9(8), 1003549.Google Scholar
  28. 28.
    Edwards, T. E., & Appleby, T. C. (2014). Crystal structure of HCV NS5B genotype 2A JFH-1 isolate with S15G E86Q E87Q C223H V321I mutations in complex with RNA TEMPLATE 5’-UACC, RNA PRIMER 5’-PGG, MN2+, and UDP. Protein databank. Journal of Virology, 88(4), 1–5.CrossRefGoogle Scholar
  29. 29.
    Duan, W., Song, H., Wang, H., Chai, Y., Su, C., Qi, J., & Gao, G. F. (2017). The crystal structure of Zika virus NS5 reveals conserved drug targets. The EMBO Journal, 36(7), 1–5.CrossRefGoogle Scholar
  30. 30.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., & Bourne, P. E. (2000). The protein databank. Nucleic Acids Research, 28, 235–242.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.CrossRefPubMedGoogle Scholar
  32. 32.
    Deng, C.-L., Yeo, H., Ye, H.-Q., Liu, S.-Q., Shang, B.-D., Gong, P., & Zhang, B. (2014). Inhibition of enterovirus 71 by adenosine analog NITD008. Journal of Virology, 88(20), 11915–11923.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yin, Z., Chen, Y.-L., Schul, W., Wang, Q.-Y., Gu, F., Duraiswamy, J., & Shi, P.-Y. (2009). An adenosine nucleoside inhibitor of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20435–20439.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Trott, O., & Olson, A. J. (2010). AutoDock Vina. Journal of Computational Chemistry, 31, 445–461.Google Scholar
  35. 35.
    Kusumaningrum, S., Budianto, E., Kosela, S., Sumaryono, W., & Juniarti, F. (2014). The molecular docking of 1,4-naphthoquinone derivatives as inhibitors of polo-like kinase 1 using Molegro virtual Docker. Journal of Applied Pharmaceutical Science, 4(11), 47–53.Google Scholar
  36. 36.
    Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668-1688.Google Scholar
  37. 37.
    D.A. Case J.T. Berryman, R.M. Betz, Q. Cai, D.S. Cerutti, T.E. Cheatham, III, T.A. Darden, R.E. Duke, H. Gohlke, A.W. Goetz, S. Gusarov, N. Homeyer, P. Janowski, J. Kaus, I. Kolossváry, A. Kovalenko, T.S. Lee, S. LeGrand, T. Luchko, R. Luo, B. Madej, K.M, V. B. (2014). Amber 14 (pp. 29-52). San Francisco: University of California.Google Scholar
  38. 38.
    Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang, J., Wang, W., Kollmann, P., & Case, D. (2005). Antechamber, an accessory software PackageFor molecular mechanical calculation. Journal of Computational Chemistry, 25(2), 1157–1174.Google Scholar
  40. 40.
    Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computational Chemistry, 25(9), 1157–1174.CrossRefPubMedGoogle Scholar
  41. 41.
    Heaps, C. (2008). An introduction to LEAP. Stockholm Environment Institute, 1–16.Google Scholar
  42. 42.
    Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Molecular Informatics, 31(2), 114–122.CrossRefPubMedGoogle Scholar
  43. 43.
    Cele, F. N., Ramesh, M., & Soliman, M. E. (2016). Per-residue energy decomposition pharmacophore model to enhance virtual screening in drug discovery: a study for identification of reverse transcriptase inhibitors as potential anti-HIV agents. Drug Design, Development and Therapy, 10, 1365–1377.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kumalo, H. M., & Soliman, M. E. (2016). Per-residue energy footprints-based pharmacophore modeling as an enhanced in silico approach in drug discovery: a case study on the identification of novel β-Secretase1 (BACE1) inhibitors as anti-Alzheimer agents. Cellular and Molecular Bioengineering, 9(1), 175–189.CrossRefGoogle Scholar
  45. 45.
    Koes, D. R. C., & Carlos, J. (2012). ZINCPharmer: pharmacophore search of the ZINC database. Nucleic Acids Research, 40(W1), 409–414.CrossRefGoogle Scholar
  46. 46.
    Wolber, G., & Langer, T. (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160–169.CrossRefPubMedGoogle Scholar
  47. 47.
    Kumar, R., Sharma, A., & Varadwaj, P. K. (2011). A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. Journal Of Natural Science, Biology, And Medicine, 2(2), 168–173.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ahmed, S. S. S. J., & Ramakrishnan, V. (2012). Systems biological approach of molecular descriptors connectivity: optimal descriptors for oral bioavailability prediction. PLoS One, 7(7), 40654.Google Scholar
  49. 49.
    WHO. (2016). Zika situation report. Who, (February), 1–15. Accessed on 23/07/2017.Google Scholar
  50. 50.
    Singh, P. K., Guest, J.-M., Kanwar, M., Boss, J., Gao, N., Juzych, M. S., & Kumar, A. (2017). Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes. JCI Insight, 2(4), 25–36.CrossRefGoogle Scholar
  51. 51.
    Shao, Q., Herrlinger, S., Yang, S.-L., Lai, F., Moore, J. M., Brindley, M. A., & Chen, J.-F. (2016). Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage. Development, 143(22), 4127–4136.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Katz, L. M., & Rossmann, S. N. (2017). Zika and the blood supply: a work in progress. Archives of Pathology and Laboratory Medicine, 141(1), 85–92.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nomagugu B. Ncube
    • 1
  • Pritika Ramharack
    • 1
  • Mahmoud E. S. Soliman
    • 1
    Email author
  1. 1.Molecular Bio-Computation and Drug Design Laboratory, School of Health SciencesUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations