Advertisement

Applied Biochemistry and Biotechnology

, Volume 185, Issue 3, pp 655–675 | Cite as

Emergence of a Promising Lead Compound in the Treatment of Triple Negative Breast Cancer: An Insight into Conformational Features and Ligand Binding Landscape of c-Src Protein with UM-164

  • Umar Ndagi
  • Ndumiso N. Mhlongo
  • Mahmoud E. Soliman
Article

Abstract

UM-164, a potent Src/p38 inhibitor, is a promising lead compound for developing the first targeted therapeutic strategy against triple-negative breast cancer (TNBC). However, lack of understanding of conformational features of UM-164 in complex with Src serves a challenge in the rational design of novel Src dual inhibitors. Herein, we provide an in-depth insight into conformational features of Src-UM-164 using different computational approaches. This involved molecular dynamics (MD) simulation, principal component analysis (PCA), thermodynamics calculations, dynamic cross-correlation (DCCM) analysis, and hydrogen bond formation. Findings from this study revealed that (1) the binding of UM-164 to Src induces a more stable and compact conformation; (2) the binding of UM-164 results in increased correlation among the active site residue; (3) the presence of multiple phenyl rings and fluorinated phenyl group in UM-164 contributes to the steric effect; (4) a relatively high-binding free energy estimated for the Src-UM-164 system is affirmative of its experimental potency; (5) hydrophobic packing contributes significantly to the drug binding in Src-UM-164; and (6) observed increase in H-bond distance of interacting residue atoms and Dasatinib compared to UM-164. Findings from this study can serve as a baseline in the design of novel Src inhibitors with dual inhibitory properties.

Keywords

Src Molecular dynamics TNBC UM-164 Dual kinase inhibitor and DFG-out 

Notes

Acknowledgements

The authors acknowledge the School of Health Science, University of KwaZulu-Natal, Westville Campus for financial assistance and the Centre for High Performance Computing (CHPC, www.chpc.ac.za) Cape Town, South Africa for computational resources.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interests.

References

  1. 1.
    Sharma, G. N., Dave, R., Sanadya, J., Sharma, P., & Sharma, K. K. (2010). Various types and management of breast cancer: an overview. Journal of Advanced Pharmaceutical Technology & Research, 2, 109–126.Google Scholar
  2. 2.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 66, 7–30.Google Scholar
  3. 3.
    Gilani, R. A., Phadke, S., Bao, L. W., Lachacz, E. J., Dziubinski, M. L., Brandvold, K. R., Steffey, M. E., Kwarcinski, F. E., Graveel, C. R., Kidwell, K. M., Merajver, S. D., & Soellner, M. B. (2016). UM-164: a potent c-Src/p38 kinase inhibitor with in vivo activity against triple-negative breast cancer. Clinical Cancer Research, 22, 20.CrossRefGoogle Scholar
  4. 4.
    Anders, C. K., & Carey, L. A. (2009). Biology, metastatic patterns, and treatment of patients with triple-negative breast cancer. Clinical Breast Cancer, 9, 73–81.CrossRefGoogle Scholar
  5. 5.
    Jiao, Q., Wu, A., Shao, G., Peng, H., Wang, M., Ji, S., Liu, P., & Zhang, J. (2014). The latest progress in research on triple negative breast cancer (TNBC): risk factors, possible therapeutic targets and prognostic markers. Journal Thoracic Disease, 6(9), 1329–1335.  https://doi.org/10.3978/j.issn.2072-1439.2014.08.13.CrossRefGoogle Scholar
  6. 6.
    Gluz, O., Liedtke, C., Gottschalk, N., Pusztai, L., Nitz, U., & Harbeck, N. (2009). Triple-negative breast cancer—current status and future directions’. Ann Oncologia, 20, 1913–1927.CrossRefGoogle Scholar
  7. 7.
    Peddi, P. F., Ellis, M. J., & Ma, C. (2012). Molecular basis of triple negative breast cancer and implications for therapy. International Journal of Breast Cancer, 2012, 217185.CrossRefPubMedGoogle Scholar
  8. 8.
    Jafarzadeh, N., Ashraf, H., Khoshroo, F., Sepehri Shamloo, A., Bidouei, F., & Ghaffarzadehgan, K. (2015). Triple negative breast cancer: molecular classification, prognostic markers and targeted therapies. Razavi International Journal of Medicine, 3, 2.CrossRefGoogle Scholar
  9. 9.
    Bayraktar, S., & S. Glück. (2013). Molecularly targeted therapies for metastatic triple-negative breast cancer. Breast Cancer Research and Treatment, 138(1), 21–35.  https://doi.org/10.1007/s10549-013-2421-5.CrossRefPubMedGoogle Scholar
  10. 10.
    Finn, R. S., Dering, J., Ginther, C., Wilson, C. A., Glaspy, P., Tchekmedyian, N., & Slamon, D. J. (2007). Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/“triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Research and Treatment, 105(3), 319–326.  https://doi.org/10.1007/s10549-006-9463-x.CrossRefPubMedGoogle Scholar
  11. 11.
    Kwarcinski, F. E., Brandvold, K. R., Phadke, S., Beleh, O. M., Johnson, T. K., Meagher, J. L., Seeliger, M. A., Stuckey, J. A., & Soellner, M. B. (2016). Conformation-selective analogues of Dasatinib reveal insight into kinase inhibitor binding and selectivity. ACS Chemical Biology, 11(5), 1296–1304.  https://doi.org/10.1021/acschembio.5b01018.CrossRefPubMedGoogle Scholar
  12. 12.
    Vajpai, N., Strauss, A., Fendrich, G., Cowan-Jacob, S. W., Manley, P. W., Grzesiek, S., & Jahnke, W. (2008). Solution conformations and dynamics of ABL kinase-inhibitor complexes determined by NMR substantiate the different binding modes of imatinib/nilotinib and dasatinib. The Journal of Biological Chemistry, 283(26), 18292–18302.  https://doi.org/10.1074/jbc.M801337200.CrossRefPubMedGoogle Scholar
  13. 13.
    Finn, R. S., Bengala, C., Ibrahim, N., Roche, H., Sparano, J., Strauss, L. C., Fairchild, J., Sy, O., & Goldstein, L. J. (2011). Dasatinib as a single agent in triple-negative breast cancer: results of an open-label phase 2 study. Clinical Cancer Research, 17, 6905–6913.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen, R., & Chen, B. (2015). The role of dasatinib in the management of chronic myeloid leukemia. Drug Design, Development and Therapy, 9, 773–779.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Soverini, S., Martinelli, G., Colarossi, S., Gnani, A., Castagnetti, F., Rosti, G., Bosi, C., Paolini, S., Rondoni, M., Piccaluga, P. P., Palandri, F., Giannoulia, P., Marzocchi, G., Luatti, S., Testoni, N., Iacobucci, I., Cilloni, D., Saglio, G., & Baccarani, M. (2006). Presence or the emergence of a F317L BCR-ABL mutation may be associated with resistance to Dasatinib in Philadelphia chromosome–positive leukemia. Journal of Clinical Oncology, 24, 51–52.CrossRefGoogle Scholar
  16. 16.
    Boyle, P. (2012). Triple-negative breast cancer: epidemiological considerations and recommendations’. Ann Oncologia, 23, 7–12.CrossRefGoogle Scholar
  17. 17.
    Yadav, S., Sehrawat, A., Eroglu, Z., Somlo, G., Hickey, R., Yadav, S., Liu, X., Awasthi, Y. C., Awasthi, S., Ossovskaya, V., Wang, Y., Budoff, A., Xu, Q., Lituev, A., Metzger-Filho, O., Tutt, A., de Azambuja, E., Saini, K., Viale, G., Thompson, A., Newman, T., Stebbing, J., Ellis, P., Chu, Q., King, T., Hurd, T., Brouckaert, O., Wildiers, H., Floris, G., Neven, P., Liu, H., Scholz, C., Zang, C., Schefe, J., Habbel, P., Carey, L., Rugo, H., Marcom, P., Mayer, E., Esteva, F., O’Shaughnessy, J., Miles, D., Gray, R., Dieras, V., Perez, E., Somlo, G., Sparano, J., Cigler, T., Fleming, G., Luu, T., Silver, D., Richardson, A., Eklund, A., Wang, Z., Szallasi, Z., Tentori, L., Graziani, G., Tutt, A., Robson, M., Garber, J., Domchek, S., Audeh, M., Isakoff, S., Overmoyer, B., Tung, N., Gelman, R., Giranda, V., Yazdi, P., Wang, Y., Zhao, S., Patel, N., Lee, E., Michaelis, C., Ciosk, R., Nasmyth, K., Wetzer, S., Lehane, C., Uhlmann, F., Arumugam, P., Gruber, S., Tanaka, K., Haering, C., Mechtler, K., Hirano, T., Nasmyth, K., Haering, C., Hopfner, K.-P., Liu, Z., Scannell, D., Eisen, M., Tjian, R., Rhodes, J., McEwan, M., Horsfield, J., Rocquain, J., Gelsi-Boyer, V., Adélaïde, J., Murati, A., Carbuccia, N., Xu, H., Tomaszewski, J., McKay, M., Hagemann, C., Weigelin, B., Schommer, S., Schulze, M., Al-Jomah, N., Unal, E., Heidinger-Pauli, J., Kim, W., Guacci, V., Onn, I., Yamamoto, G., Irie, T., Aida, T., Nagoshi, Y., Tsuchiya, R., Jeong, H., Ryu, Y., An, J., Lee, Y., Kim, A., Atienza, J., Roth, R., Rosette, C., Smylie, K., Kammerer, S., Xu, H., Yan, M., Patra, J., Natrajan, R., Yan, Y., Ghiselli, G., Iozzo, R., Ghiselli, G., Coffee, N., Munnery, C., Koratkar, R., Siracusa, L., Yadav, S., Singhal, S., Singhal, J., Wickramarachchi, D., Knutson, E., Awasthi, S., Cheng, J., Singhal, S., Saini, M., Pandya, U., Singhal, S., Yadav, S., Drake, K., Singhal, J., Awasthi, S., Singhal, S., Wickramarachchi, D., Yadav, S., Singhal, J., Leake, K., Minamide, L., Bamburg, J., Sehrawat, A., Yadav, S., Awasthi, Y., Basu, A., Warden, C., Yadav, S., Singhal, J., Singhal, S., Awasthi, S., Singhal, S., Yadav, S., Singhal, J., Sahu, M., Awasthi, Y., Walsh, S., Xu, J., Xu, H., Kurundkar, A., Maheshwari, A., Boreddy, S., Sahu, R., Srivastava, S., Coene, E., Gadelha, C., White, N., Malhas, A., Thomas, B., Couchman, J., Kapoor, R., Sthanam, M., Wu, R., Wu, R., Couchman, J., Bard, M., Hegmans, J., Hemmes, A., Luider, T., Willemsen, R., Telli, M., Ford, J., McLellan, J., O’Neil, N., Barrett, I., Ferree, E., van Pel, D., Lehmann, B., Bauer, J., Chen, X., Sanders, M., & Chakravarthy, A. (2013). Role of SMC1 in overcoming drug resistance in triple negative breast cancer. PLoS One, 8, 64338.CrossRefGoogle Scholar
  18. 18.
    Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., & Shaw, D. E. (2009). Long-timescale molecular dynamics simulations of protein structure and function. Current Opinion in Structural Biology, 19(2), 120–127.  https://doi.org/10.1016/j.sbi.2009.03.004.CrossRefPubMedGoogle Scholar
  19. 19.
    David, C. C., & Jacobs, D. J. (2014). Principal component analysis: a method for determining the essential dynamics of proteins. Methods in Molecular Biology, 1084, 193–226.  https://doi.org/10.1007/978-1-62703-658-0_11.CrossRefPubMedGoogle Scholar
  20. 20.
    Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2009). Principal component analysis for protein folding dynamics. Journal of Molecular Biology, 385(1), 312–329.  https://doi.org/10.1016/j.jmb.2008.10.018.CrossRefPubMedGoogle Scholar
  21. 21.
    Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9(1), 71.  https://doi.org/10.1186/1741-7007-9-71.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ndagi, U., Mhlongo, N. N., & Soliman, M. E. (2017). Re-emergence of an orphan therapeutic target for the treatment of resistant prostate cancer—a thorough conformational and binding analysis for ROR-γ protein. Journal of Biomolecular Structure & Dynamics, 1, 1–16.Google Scholar
  23. 23.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera. A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.  https://doi.org/10.1002/jcc.20084.CrossRefPubMedGoogle Scholar
  24. 24.
    Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17.  https://doi.org/10.1186/1758-2946-4-17.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.  https://doi.org/10.1002/jcc.21334.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Bikadi, Z., & Hazai, E. (2009). Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Journal of Cheminformatics, 1(1), 15.  https://doi.org/10.1186/1758-2946-1-15.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Huey, R., & Morris, G. M. (2005). Using AutoDock with AutoDockTools: a tutorial (1st ed.). La Jolla: The script research institute molecular graphics laboratory.Google Scholar
  28. 28.
    Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662.  https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B.CrossRefGoogle Scholar
  29. 29.
    Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888.  https://doi.org/10.1021/ct400314y.CrossRefPubMedGoogle Scholar
  30. 30.
    Web-based computational prediction of protonation states and biophysics (2016). Available from http://pubs.acs.org/doi/10.1021/jz501780a. Accessed October 24, 2016.
  31. 31.
    Gaussian 2009. Available from http://gaussian.com/glossary/g09/. Accessed October 24, 2016.
  32. 32.
    RESP ESP charge derived server home page 2010. Available from http://upjv.q4md-forcefieldtools.org/REDServer/. Accessed October 26, 2016.
  33. 33.
    Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computational Chemistry, 25(9), 1157–1174.  https://doi.org/10.1002/jcc.20035.CrossRefPubMedGoogle Scholar
  34. 34.
    Perez, A., MacCallum, J. L., Brini, E., Simmerling, C., & Dill, K. A. (2015). Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations. Journal of Chemical Theory and Computation, 11(10), 4770–4779.  https://doi.org/10.1021/acs.jctc.5b00662.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tan, Z., Spasic, A., & Mathews, D. H. (2015). 96 benchmark of Amber ff12SB force field by comparison of estimated hairpin loop folding stabilities to experiments. Journal of Biomolecular Structure & Dynamics, 33(sup1), 61–62.  https://doi.org/10.1080/07391102.2015.1032713.CrossRefGoogle Scholar
  36. 36.
    Case, D. A., Darden, T., Iii, T. E. C., Simmerling, C., Brook, S., Roitberg, A., Wang, J., Southwestern, U. T., Duke, R. E., Hill, U., Luo, R., Irvine, U. C., Roe, D. R., Walker, R. C., Legrand, S., Swails, J. Cerutti, D., Kaus, J., Betz, R., Wolf, R. M., Merz, K. M., State, M., Seabra, G., Janowski, P., Paesani, F., Liu, J., Wu, X., Steinbrecher, T., Gohlke, H., Homeyer, N., Cai, Q., Smith, W., Mathews, D., Salomon-ferrer, R., Sagui, C.,State, N. C., Babin, V., Luchko, T., Gusarov, S.,Kovalenko, A., Berryman, J., & Kollman, P. A. (2015). Amber Reference Manual 2015, 1–883.Google Scholar
  37. 37.
    Johnson, A., Johnson, T., & Khan, A. (2012). Thermostats in molecular dynamics simulations, 1st edn, 1–23.Google Scholar
  38. 38.
    Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684.CrossRefGoogle Scholar
  39. 39.
    Gonnet, P. (2007). P-SHAKE: A quadratically convergent SHAKE in O (n2). Journal of Computational Physics, 220(2), 740–750.  https://doi.org/10.1016/j.jcp.2006.05.032.CrossRefGoogle Scholar
  40. 40.
    Roe, D. R., & Cheatham III, T. E. (2013). PTRAJ and CPPTRAJ: software for processing and analysis of molecular synamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095.  https://doi.org/10.1021/ct400341p.CrossRefPubMedGoogle Scholar
  41. 41.
    Seifert, E. (2014). OriginPro 9.1: scientific data analysis and graphing software—software review. Journal of Chemical Information and Modeling, 54, 1552–1552.CrossRefPubMedGoogle Scholar
  42. 42.
    Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10, 449–461.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51, 69–82.CrossRefGoogle Scholar
  44. 44.
    Arnold, G. E., & Ornstein, R. L. (1997). Molecular dynamics study of time-correlated protein domain motions and molecular flexibility: cytochrome P450BM-3. Biophysical Journal, 73(3), 1147–1159.  https://doi.org/10.1016/S0006-3495(97)78147-5.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Carugo, O., & Pongor, S. (2001). A normalized root-mean-square distance for comparing protein three-dimensional structures. Protein Science, 10(7), 1470–1473.  https://doi.org/10.1110/ps.690101.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Loeffler, H. H., & Winn, M. D. (2013). Ligand binding and dynamics of the monomeric epidermal growth factor receptor ectodomain. Proteins, 81(11), 1931–1943.  https://doi.org/10.1002/prot.24339.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ahmad, E., Rabbani, G., Zaidi, N., Khan, M. A., Qadeer, A., Ishtikhar, M., Singh, S., & Khan, R. H. (2013). Revisiting ligand-induced conformational changes in proteins: essence, advancements, implications and future challenges. Journal of Biomolecular Structure & Dynamics, 31(6), 630–648.  https://doi.org/10.1080/07391102.2012.706081.CrossRefGoogle Scholar
  48. 48.
    Vendome, J., Posy, S., Jin, X., Bahna, F., Ahlsen, G., Shapiro, L., & Honig, B. (2011). Molecular design principles underlying β-strand swapping in the adhesive dimerization of cadherins. Nature Structural & Molecular Biology, 18(6), 693–700.  https://doi.org/10.1038/nsmb.2051.CrossRefGoogle Scholar
  49. 49.
    Pucheta-Martínez, E., Saladino, G., Morando, M. A., Martinez-Torrecuadrada, J., Lelli, M., Sutto, L., D’Amelio, N., & Gervasio, F. L. (2016). An allosteric cross-talk between the activation loop and the ATP binding site regulates the activation of Src kinase. Scientific Reports, 6(1), 24235.  https://doi.org/10.1038/srep24235.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kruewel, T., Schenone, S., Radi, M., Maga, G., Rohrbeck, A., Botta, M., Borlak, J., Sirvent, A., Benistant, C., Roche, S., Yeatman, T., Horita, M., Andreu, E., Benito, A., Arbona, C., Sanz, C., Oetzel, C., Jonuleit, T., Gotz, A., Michels, H., Olivieri, A., Manzione, L., Donato, N., Wu, J., Stapley, J., Gallick, G., Lin, H., Hu, Y., Swerdlow, S., Duffy, T., Weinmann, R., Lee, F., Martinelli, G., Soverini, S., Rosti, G., Baccarani, M., Nautiyal, J., Majumder, P., Patel, B., Lee, F., Majumdar, A., Alvarez, R., Kantarjian, H., Cortes, J., Johnson, F., Agrawal, S., Burris, H., Rosen, L., Dhillon, N., Saad, F., Haura, E., Tanvetyanon, T., Chiappori, A., Williams, C., Simon, G., Saad, F., Lipton, A., Yardley, D., III, H. B., Markus, T., Spigel, D., Greco, F., Ischenko, I., Camaj, P., Seeliger, H., Kleespies, A., Guba, M., Huynh, H., Zhu, A., Duda, D., Sahani, D., Jain, R., Zhu, A., Yau, T., Chan, P., Epstein, R., Poon, R., Carraro, F., Pucci, A., Naldini, A., Schenone, S., Bruno, O., Carraro, F., Naldini, A., Pucci, A., Locatelli, G., Maga, G., Schenone, S., Brullo, C., Bruno, O., Bondavalli, F., Mosti, L., Manetti, F., Santucci, A., Locatelli, G., Maga, G., Spreafico, A., Reamon-Buettner, S., Borlak, J., Reamon-Buettner, S., Borlak, J., Johnson, F., Saigal, B., Talpaz, M., Donato, N., Johnson, D., Walker, C., Payton, M., Chung, G., Yakowec, P., Wong, A., Powers, D., Roche, S., Fumagalli, S., Courtneidge, S., Adolph, D., Flach, N., Mueller, K., Ostareck, D., Ostareck-Lederer, A., Ostareck-Lederer, A., Ostareck, D., Cans, C., NEubauer, G., Bomsztyk, K., Yeatman, T., Silva, C., Park, A., Shen, T., Chien, S., Guan, J., Park, J., Han, H., Watson, C., Kreuzaler, P., Mendrysa, S., Perry, M., Coluccia, A., Cirulli, T., Neri, P., Mangieri, D., Colanardi, M., Meng, X., Jin, Y., Yu, Y., Bai, J., Liu, G., Aggarwal, B., Gehlot, P., Burger, J., Stewart, D., Oh, J., Olman, M., Benveniste, E., Walenkamp, A., Boer, I., Bestebroer, J., Rozeveld, D., Timmer-Bosscha, H., Choi, D., Lee, H., Hur, K., Kim, J., Park, G., Lindstrom, A., Tot, T., Stendahl, U., Syrjanen, S., Syrjanen, K., Goetz, J., Lajoie, P., Wiseman, S., Nabi, I., Park, J., Han, H., Lappi-Blanco, E., Kaarteenaho-Wiik, R., Maasilta, P., Anttila, S., Paakko, P., Thom, I., Schult-Kronefeld, O., Burkholder, I., Schuch, G., Andritzky, B., Fuchs, B., Fujii, T., Dorfman, J., Goodwin, J., Zhu, A., Choma, D., Milano, V., Pumiglia, K., DiPersio, C., Skorski, T., Niida, H., Nakanishi, M., Song, L., Morris, M., Bagui, T., Lee, F., Jove, R., Fabarius, A., Giehl, M., Rebacz, B., Kraemer, A., Frank, O., Jia, H., Wu, J., Zhu, X., Chen, J., Yang, S., Alvarez, R., Kantarjian, H., Cortes, J., Fujimoto, N., Wislez, M., Zhang, J., Iwanaga, K., Dackor, J., Zhang, X., Chang, A., Ishizawar, R., Parsons, S., Alvarez, R., Kantarjian, H., Cortes, J., Sanchez-Prieto, R., Sanchez-Arevalo, V., Servitja, J., Gutkind, J., Capdeville, R., Buchdunger, E., Zimmermann, J., Matter, A., Redaelli, S., Piazza, R., Rostagno, R., Magistroni, V., Perini, P., Capdeville, R., Buchdunger, E., Zimmermann, J., Matter, A., Giles, F., O’Dwyer, M., Swords, R., Krystal, G., Fabbro, D., Ruetz, S., Buchdunger, E., Cowan-Jacob, S., Fendrich, G., Horita, M., Andreu, E., Benito, A., Arbona, C., Sanz, C., Oetzel, C., Jonuleit, T., Gotz, A., Michels, H., Giles, F., O’Dwyer, M., Swords, R., Bixby, D., Talpaz, M., Alvarez, R., Kantarjian, H., Cortes, J., Johnson, F., Saigal, B., Talpaz, M., Donato, N., Johnson, F., Saigal, B., Talpaz, M., Donato, N., Nautiyal, J., Majumder, P., Patel, B., Lee, F., Majumdar, A., Olivieri, A., Manzione, L., Nautiyal, J., Majumder, P., Patel, B., Lee, F., Majumdar, A., Olivieri, A., Manzione, L., Alvarez, R., Kantarjian, H., Cortes, J., Johnson, F., Agrawal, S., Burris, H., Rosen, L., Dhillon, N., Haura, E., Tanvetyanon, T., Chiappori, A., Williams, C., Simon, G., Carraro, F., Pucci, A., Naldini, A., Schenone, S., Bruno, O., Carraro, F., Naldini, A., Pucci, A., Locatelli, G., Maga, G., Manetti, F., Santucci, A., Locatelli, G., Maga, G., Spreafico, A., Schenone, S., Brullo, C., Bruno, O., Bondavalli, F., Mosti, L., Schenone, S., Bruno, O., Bondavalli, F., Ranise, A., Mosti, L., Bruno, O., Brullo, C., Bondavalli, F., Schenone, S., Ranise, A., Reamon-Buettner, S., Borlak, J., Niehof, M., Borlak, J., Rohrbeck, A., & Borlak, J. (2010). Molecular characterization of c-Abl/c-Src kinase inhibitors targeted against murine tumour progenitor cells that express stem cell markers. PLoS One, 5, 14143.CrossRefGoogle Scholar
  51. 51.
    Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2, 1501240–1501240.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Umar Ndagi
    • 1
  • Ndumiso N. Mhlongo
    • 2
  • Mahmoud E. Soliman
    • 1
  1. 1.Molecular Modelling and Drug Design Research Group, School of Health SciencesUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.School of Laboratory Medicine and Medical Sciences, Discipline of Medical BiochemistryUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations