Applied Biochemistry and Biotechnology

, Volume 185, Issue 1, pp 114–126 | Cite as

Physical Pretreatment Methods for Improving Microalgae Anaerobic Biodegradability

  • Olivia CórdovaEmail author
  • Fabiana Passos
  • Rolando Chamy


Microalgae may be a potential feedstock for biogas production through anaerobic digestion. However, this process is limited by the hydrolytic stage, due to the complex and resistant microalgae cell wall components. This fact hinders biomass conversion into biogas, demanding the application of pretreatment techniques for inducing cell damage and/or lysis and organic matter solubilisation. In this study, sonication, thermal, ultrasound, homogeneizer, hydrothermal and steam explosion pretreatments were evaluated in different conditions for comparing their effects on anaerobic digestion performance in batch reactors. The results showed that the highest biomass solubilisation values were reached for steam explosion (65–73%) and ultrasound (33–57%). In fact, only applied energies higher than 220 W or temperatures higher than 80 °C induced cell wall lysis in C. sorokiniana. Nonetheless, the highest methane yields were not correlated to biogas production. Thermal hydrolysis and steam explosion showed lower methane yields in respect to non-pretreated biomass, suggesting the presence of toxic compounds that inhibited the biological process. Accordingly, these pretreatment techniques led to a negative energy balance. The best pretreatment method among the ones evaluated was thermal pretreatment, with four times more energy produced that demanded.


Algae Anaerobic digestion BMP test Bioenergy Biogas Modelling 



The authors want to thank Pontificie Universidad Católica de Valparaiso for the financial support. Olivia Córdova appreciates her scholarship funded by the CONICYT, Beca Nacional Doctorado. 21121012.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuels, Bioproducts and Biorefining, 6(3), 205–218. Scholar
  2. 2.
    González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Impact of microalgae characteristics on their conversion to biofuel. Part I: focus on cultivation and biofuel production. Biofuels, Bioproducts and Biorefining, 6(3), 246–256. Scholar
  3. 3.
    Bohutskyi, P., & Bouwer, E. (2013). Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In W. J. Lee (Ed.), Advanced biofuels and bioproducts (pp. 873–975). New York, NY: Springer New York. Scholar
  4. 4.
    Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., & Ferrer, I. (2016). Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresource Technology, 199, 386–397. Scholar
  5. 5.
    Ometto, F., Quiroga, G., Psenicka, P., Whitton, R., Jefferson, B., & Villa, R. (2014). Impacts of microalgae pre-treatments for improved anaerobic digestion: thermal treatment, thermal hydrolysis, ultrasound and enzymatic hydrolysis. Water Research, 65, 350–361. Scholar
  6. 6.
    Hadj-Romdhane, F., Jaouen, P., Pruvost, J., Grizeau, D., Van Vooren, G., & Bourseau, P. (2012). Development and validation of a minimal growth medium for recycling Chlorella vulgaris culture. Bioresource Technology, 123, 366–374. Scholar
  7. 7.
    De Oliveira, M. A. C. L., Monteiro, M. P. C., Robbs, P. G., & Leite, S. G. F. (1999). Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquaculture International, 7(4), 261–275. Scholar
  8. 8.
    González-Fernández, C., Sialve, B., Bernet, N., & Steyer, J. P. (2012). Comparison of ultrasound and thermal pretreatment of Scenedesmus biomass on methane production. Bioresource Technology, 110, 610–616. Scholar
  9. 9.
    Cho, S., Park, S., Seon, J., Yu, J., & Lee, T. (2013). Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresource Technology, 143, 330–336. Scholar
  10. 10.
    Passos, F., Carretero, J., & Ferrer, I. (2015). Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chemical Engineering Journal, 279, 667–672. Scholar
  11. 11.
    Sato, M., Murata, Y., Mizusawa, M., Iwahashi, H., & Oka, S. (2004). A simple and rapid dual-fluorescence viability assay for microalgae. Microbiol Cult Coll, 20(2), 53–59 Retrieved from Scholar
  12. 12.
    Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., et al. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. Scholar
  13. 13.
    Donoso-Bravo, A., Pérez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160(2), 607–614. Scholar
  14. 14.
    Passos, F., García, J., & Ferrer, I. (2013). Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresource Technology, 138, 79–86. Scholar
  15. 15.
    Doncaster, C. P., & Davey, A. J. H. (2007). Analysis of variance and covariance: How to choose and construct models for the life sciences. Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences. doi:
  16. 16.
    APHA-AWWA-WPCF. (1999). Standard Methods for the Examination of Water and Wastewater. (20th ed.)Washington.Google Scholar
  17. 17.
    Safi, C., Charton, M., Pignolet, O., Silvestre, F., Vaca-Garcia, C., & Pontalier, P. Y. (2013). Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors. Journal of Applied Phycology, 25(2), 523–529. Scholar
  18. 18.
    Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A colorimetric method for the determination of sugars. Nature, 168(4265), 167. Retrieved from
  19. 19.
    Passos, F., Solé, M., García, J., & Ferrer, I. (2013). Biogas production from microalgae grown in wastewater: effect of microwave pretreatment. Applied Energy, 108, 168–175. Scholar
  20. 20.
    Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18. Scholar
  21. 21.
    Passos, F., Uggetti, E., Carrère, H., & Ferrer, I. (2014). Pretreatment of microalgae to improve biogas production: a review. Bioresource Technology, 172, 403–412. Scholar
  22. 22.
    Rodriguez, C., Alaswad, A., Mooney, J., Prescott, T., & Olabi, A. G. (2015). Pre-treatment techniques used for anaerobic digestion of algae. Fuel Processing Technology, 138, 765–779. Scholar
  23. 23.
    Jankowska, E., Sahu, A. K., & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renewable and Sustainable Energy Reviews, 75(September), 692–709. Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratorio de Biotecnología Ambiental, Escuela de Ingeniería en Bioquímica, Facultad de IngenieríaPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Department of Sanitary and Environmental EngineeringFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations