Advertisement

Applied Biochemistry and Biotechnology

, Volume 185, Issue 1, pp 140–152 | Cite as

Analysis of the Genome and Chromium Metabolism-Related Genes of Serratia sp. S2

  • Lanlan Dong
  • Simin Zhou
  • Yuan He
  • Yan Jia
  • Qunhua Bai
  • Peng Deng
  • Jieying Gao
  • Yingli Li
  • Hong XiaoEmail author
Article
  • 206 Downloads

Abstract

This study is to investigate the genome sequence of Serratia sp. S2. The genomic DNA of Serratia sp. S2 was extracted and the sequencing library was constructed. The sequencing was carried out by Illumina 2000 and complete genomic sequences were obtained. Gene function annotation and bioinformatics analysis were performed by comparing with the known databases. The genome size of Serratia sp. S2 was 5,604,115 bp and the G+C content was 57.61%. There were 5373 protein coding genes, and 3732, 3614, and 3942 genes were respectively annotated into the GO, KEGG, and COG databases. There were 12 genes related to chromium metabolism in the Serratia sp. S2 genome. The whole genome sequence of Serratia sp. S2 is submitted to the GenBank database with gene accession number of LNRP00000000. Our findings may provide theoretical basis for the subsequent development of new biotechnology to repair environmental chromium pollution.

Keywords

Serratia sp. S2 Genome sequencing Chromium metabolism genes Bioinformatics 

Notes

Author Contribution

Hong Xiao contributes to conception and design of experiments. Lanlan Dong and Simin Zhou carried out experiments. Yuan He and Peng Deng performed analysis and interpretation of data. Lanlan Dong and Simin Zhou contribute to the writing and redrafting of the manuscript. Jieying Gao and Yan Jia revise the manuscript critically for important intellectual content. Qunhua Bai approves the final version to be published. All authors read and approve the final manuscript.

Funding Information

This work was supported by the National Natural Science Foundation of China [grant number 21403021], the Scientific and Technological Research projects of Chongqing city Board of Education [grant number KJ1500216], and the Students Scientific Research and Innovation Project of Chongqing Medical University [grant number. 201722].

Compliance with Ethical Standards

Conflict of Interest

All authors declare no financial competing interests.

All authors declare no non-financial competing interests.

References

  1. 1.
    Dadrasnia, A., Chuan Wei, K. S., Shahsavari, N., Azirun, M. S., & Ismail, S. (2015). Biosorption potential of Bacillus salmalaya strain 139SI for removal of Cr(VI) from aqueous solution. International Journal of Environmental Research and Public Health, 12, 15321–15338.CrossRefGoogle Scholar
  2. 2.
    Khatoon, N., Husain Khan, A., Pathak, V., Agnihotri, N., & Rehman, M. (2013). Removal of hexavalent chromium from synthetic wastewater using synthetic Nano Zerovalent iron (NZVI) as adsorbent. International Journal of Innovative Research in Science, Engineering and Technology, 11, 6140–6149.Google Scholar
  3. 3.
    Malaviya, P., & Singh, A. (2016). Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology, 42, 607–633.Google Scholar
  4. 4.
    Liu, X., Wu, G., Zhang, Y., Wu, D., Li, X., & Liu, P. (2015). Chromate reductase YieF from Escherichia coli enhances hexavalent chromium resistance of human HepG2 cells. International Journal of Molecular Sciences, 16, 11892–11902.CrossRefGoogle Scholar
  5. 5.
    Dey, S., & Paul, A. K. (2016). Evaluation of chromate reductase activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. Chemosphere, 156, 69–75.CrossRefGoogle Scholar
  6. 6.
    Sarkar, A., Sar, P., & Islam, E. (2016). Hexavalent chromium reduction by microbacterium oleivorans A1: a possible mechanism of chromate -detoxification and -bioremediation. Recent Patents on Biotechnology, 9, 116–129.CrossRefGoogle Scholar
  7. 7.
    Bhattacharya, P., Barnebey, A., & Zemla, M. (2015). Complete genome sequence of the chromate-reducing bacterium Thermoanaerobacter thermohydrosulfuricus strain BSB-33. Standards in Genomic Sciences, 5, 74.CrossRefGoogle Scholar
  8. 8.
    Mabrouk, M. E., Arayes, M. A., & Sabry, S. A. (2014). Hexavalent chromium reduction by chromate-resistant haloalkaliphilic Halomonas sp. M-Cr newly isolated from tannery effluent. Biotechnology and Biotechnological Equipment, 28, 659–667.CrossRefGoogle Scholar
  9. 9.
    Ge, S., Ai, W., & Dong, X. (2016). High-quality draft genome sequence of Leucobacter sp. strain G161, a distinct and effective chromium reducer. Genome Announcements, 4, e01760–e01715.CrossRefGoogle Scholar
  10. 10.
    Bonnin, R. A., Girlich, D., Imanci, D., Dortet, L., & Naas, T. (2015). Draft genome sequence of the Serratia rubidaea CIP 103234T reference strain, a human-opportunistic pathogen. Genome Announcements, 3, 2169–8287.CrossRefGoogle Scholar
  11. 11.
    Lian, J., Li, Z., Xu, Z., Guo, J., Hu, Z., Guo, Y., Li, M., & Yang, J. (2016). Isolation and Cr(VI) reduction characteristics of quinone respiration in mangrovibacter plantisponsor strain cr1. Biotechnology and Applied Biochemistry, 63, 595–600.CrossRefGoogle Scholar
  12. 12.
    Deng, P., Tan, X., Wu, Y., Bai, Q., Jia, Y., & Xiao, H. (2013). Cloning and sequence analysis of FMN red gene fragment from Serratia sp. CQMUS2. Biotechnology, 23, 8–11.Google Scholar
  13. 13.
    He, Y., Dong, L., Zhou, S., Jia, Y., Bai, Q.,Wang, R., Xiao, H. (2013). Screening of Hexavalent chromiumresistant Serratia sp. S2 and the reduction characeristics of Cr(VI). Modern Preventive Medicine, 18, 3374–3378.Google Scholar
  14. 14.
    O'Brien, C. L., Pavli, P., Gordon, D. M., & Allison, G. E. (2014). Detection of bacterial DNA in lymph nodes of Crohn’s disease patients using high throughput sequencing. Gut, 63, 1596–1606.CrossRefGoogle Scholar
  15. 15.
    Echeverría-Vega, A., Morales-Vicencio, P., Saez-Saavedra, C., Ceh, J., & Araya, R. (2016). The complete genome sequence and analysis of vB_VorS-PVo5, a Vibrio phage infectious to the pathogenic bacterium Vibrio ordalii ATCC-33509. Standards in Genomic Sciences, 11, 45.CrossRefGoogle Scholar
  16. 16.
    Zhang, G., Wang, J., Yang, J., Li, W., Deng, Y., Li, J., Huang, J., Hu, S. and Zhang, B. (2015). Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling. BMC Genomics, 581–590.Google Scholar
  17. 17.
    Peng, Y., Lai, Z., Lane, T., Nageswara-Rao, M., Okada, M., Jasieniuk, M., O’Geen, H., Kim, R. W., Sammons, R. D., Rieseberg, L. H., & Stewart Jr., C. N. (2014). De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. Plant Physiology, 166, 1241–1254.CrossRefGoogle Scholar
  18. 18.
    Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27, 573–580.CrossRefGoogle Scholar
  19. 19.
    Lagesen, K., Hallin, P., Rødland, E. A., Staerfeldt, H. H., Rognes, T., & Ussery, D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research, 35, 3100–3108.CrossRefGoogle Scholar
  20. 20.
    Lowe, T. M., & Eddy, S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25, 955–964.CrossRefGoogle Scholar
  21. 21.
    Gardner, P. P., Daub, J., Tate, J. G., Nawrocki, E. P., Kolbe, D. L., Lindgreen, S., Wilkinson, A. C., Finn, R. D., Griffiths-Jones, S., Eddy, S. R. and Bateman, A. (2009). Rfam: updates to the RNA families database. Nucleic Acids Research, D136–140.Google Scholar
  22. 22.
    Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32, D277–D280.CrossRefGoogle Scholar
  23. 23.
    Kanehisa, M. (1997). A database for post-genome analysis. Trends in Genetics, 13, 375–376.CrossRefGoogle Scholar
  24. 24.
    Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., & Hirakawa, M. (2006). From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Research, 34, D354–D357.CrossRefGoogle Scholar
  25. 25.
    Bard, J. and Winter, R. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25–29.Google Scholar
  26. 26.
    Tatusov, R. L., Koonin, E. V., & Lipman, D. J. (1997). A genomic perspective on protein families. Science, 278, 631–637.CrossRefGoogle Scholar
  27. 27.
    Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Rao, B. S., Smirnov, S., Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J., & Natale, D. A. (2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 11, 41.CrossRefGoogle Scholar
  28. 28.
    Diaz-Perez, C., Cervantes, C., Campos-Garcia, J., Julian-Sanchez, A., & Riveros-Rosas, H. (2007). Phylogenetic analysis of the chromate ion transporter (CHR) superfamily. The FEBS Journal, 6215–6227.Google Scholar
  29. 29.
    Ackerley, D. F., Gonzalez, C. F., Park, C. H., Blake II, R., Keyhan, M., & Matin, A. (2004). Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology, 70, 873–882.CrossRefGoogle Scholar
  30. 30.
    Juhnke, S., Peitzsch, N., Hübener, N., Grosse, C. and Nies, D. H. (2002). New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Archives of Microbiology, 15–25.Google Scholar
  31. 31.
    Coelho, C., Branco, R., Natal-da-Luz, T., Sousa, J. P., & Morais, P. V. (2015). Evaluation of bacterial biosensors to determine chromate bioavailability and to assess ecotoxicity of soils. Chemosphere, 62–69.Google Scholar
  32. 32.
    Branco, R., Chung, A. P., Johnston, T., Gurel, V., Morais, P., & Zhitkovich, A. (2008). The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. Journal of Bacteriology, 190, 6996–7003.CrossRefGoogle Scholar
  33. 33.
    Chihomvu, P., Stegmann, P., & Pillay, M. (2015). Characterization and structure prediction of partial length protein sequences of pcoA, pcoR and chrB genes from heavy metal resistant bacteria from the Klip River, South Africa. International Journal of Molecular Sciences, 16, 7352–7374.CrossRefGoogle Scholar
  34. 34.
    Aguilar-Barajas, E., Paluscio, E., Cervantes, C. and Rensing, C. (2008). Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiology Letters, 97–100.Google Scholar
  35. 35.
    Beller, H. R., Han, R., Karaoz, U., Lim, H., & Brodie, E. L. (2013). Genomic and physiological characterization of the chromate-reducing, aquifer-derived Firmicute Pelosinus sp. strain HCF1. Applied and Environmental Microbiology, 79, 63–73.CrossRefGoogle Scholar
  36. 36.
    Sarangi, A., & Krishnan, C. (2016). Detoxification of hexavalent chromium by Leucobacter sp. uses a reductase with specificity for dihydrolipoamide. Journal of Basic Microbiology, 56, 175–183.CrossRefGoogle Scholar
  37. 37.
    Mugerfeld, I., Law, B. A., Wickham, G. S., & Thompson, D. K. (2009). A putative azoreductase gene is involved in the Shewanella oneidensis response to heavy metal stress. Applied Microbiology and Biotechnology, 82, 1131–1141.CrossRefGoogle Scholar
  38. 38.
    Maqbool, Z., Hussain, S., Ahmad, T., Nadeem, H., Imran, M., Khalid, A., Abid, M., & Martin-Laurent, F. (2016). Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium. Environmental Science and Pollution Research International, 23, 11224–11239.CrossRefGoogle Scholar
  39. 39.
    Joutey, N. T., Sayel, H., Bahafid, W., & El Ghachtouli, N. (2015). Mechanisms of hexavalent chromium resistance and removal by microorganisms. Reviews of Environmental Contamination and Toxicology, 233, 45–69.Google Scholar
  40. 40.
    Chaudhari, A. U., Tapase, S. R., Markad, V. L., & Kodam, K. M. (2013). Simultaneous decolorization of reactive Orange M2R dye and reduction of chromate by Lysinibacillus sp. KMK-A. Journal of Hazardous Materials, 262, 580–588.CrossRefGoogle Scholar
  41. 41.
    Morais, P. V., Branco, R., & Francisco, R. (2011). Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals, 401–410.Google Scholar
  42. 42.
    Wakatsuki, T. (1995). Metal oxidoreduction by microbial cells. Journal of Industrial Microbiology, 14, 169–177.CrossRefGoogle Scholar
  43. 43.
    Puzon, G. J., Petersen, J. N., Roberts, A. G., Kramer, D. M., & Xun, L. (2002). A bacterial flavin reductase system reduces chromate to a soluble chromium (III)-NAD(+) complex. Biochemical and Biophysical Research Communications, 294, 76–81.CrossRefGoogle Scholar
  44. 44.
    Otwell, A. E., Sherwood, R. W., Zhang, S., Nelson, O. D., Li, Z., Lin, H., Callister, S. J., & Richardson, R. E. (2015). Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay. Environmental Microbiology, 17, 1977–1990.CrossRefGoogle Scholar
  45. 45.
    Willetts, A., & Kelly, D. R. (2014). Multiple native flavin reductases in camphor-metabolizing Pseudomonas putida NCIMB 10007: functional interaction with two-component diketocamphane monooxygenase isoenzymes. Microbiology, 160, 1783–1794.CrossRefGoogle Scholar
  46. 46.
    Xue, X. M., Yan, Y., Xu, H. J., Wang, N., Zhang, X., & Ye, J. (2014). ArsH from Synechocystis sp. PCC 6803 reduces chromate and ferric iron. FEMS Microbiology Letters, 356, 105–120.CrossRefGoogle Scholar
  47. 47.
    Sedláček, V., & Kučera, I. (2010). Chromate reductase activity of the Paracoccus denitrificans ferric reductase B (FerB) protein and its physiological relevance. Archives of Microbiology, 192, 919–926.CrossRefGoogle Scholar
  48. 48.
    He, M., Li, X., Guo, L., Miller, S. J., Rensing, C., & Wang, G. (2010). Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BMC Microbiology, 10, 221–227.Google Scholar
  49. 49.
    He, M., Li, X., Liu, H., Miller, S. J., Wang, G., & Rensing, C. (2011). Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. Journal of Hazardous Materials, 185, 682–688.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lanlan Dong
    • 1
  • Simin Zhou
    • 1
  • Yuan He
    • 1
  • Yan Jia
    • 1
    • 2
  • Qunhua Bai
    • 1
    • 2
  • Peng Deng
    • 3
  • Jieying Gao
    • 1
    • 2
  • Yingli Li
    • 1
    • 2
  • Hong Xiao
    • 1
    • 2
    Email author
  1. 1.Department of Health Laboratory Technology, School of Public Health and ManagementChongqing Medical UniversityChongqingChina
  2. 2.Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in HealthChongqing Medical UniversityChongqingChina
  3. 3.Yubei District Center for Disease Control and PreventionChongqingChina

Personalised recommendations