Applied Biochemistry and Biotechnology

, Volume 184, Issue 4, pp 1286–1307 | Cite as

Electroinduced Extraction of Human Ferritin Heavy Chain Expressed in Hansenula polymorpha

  • Valentina Ganeva
  • Bojidar Galutzov
  • Boyana Angelova
  • Manfred Suckow
Article
  • 54 Downloads

Abstract

А protocol for the efficient and selective recovery of human ferritin heavy chain (FTH1) expressed intracellularly in Hansenula polymorpha was developed. It was based on electropermeabilisation and an increase in the cell wall porosity by pulsed electric field (PEF) treatment and subsequent incubation with a low concentration of a lytic enzyme. Irreversible plasma membrane permeabilisation was induced by applying rectangular electric pulses in the flow mode. The electrical treatment itself did not cause the release of the recombinant protein but induced the sensitisation of H. polymorpha cells to the lytic enzyme. Consequently, the subsequent incubation of the permeabilised cells with lyticase led to the recovery of approximately 90% of the recombinant protein, with a purification factor of 1.8. A similar efficiency was obtained by using the industrial lytic enzyme Glucanex. The released FTH1 appears in the form of an oligomer with a molecular mass of approximately 480 kDa, which is able to bind iron. The possibility for scaling the proposed protocol is discussed.

Keywords

Hansenula polymorpha PEF treatment Electropermeabilisation Extraction FTH1 Lyticase Glucanex 

References

  1. 1.
    Gellissen, G., & Hollenberg, C. (1997). Application of yeastin gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene, 190, 87–98.CrossRefGoogle Scholar
  2. 2.
    Stöckmann, C., Scheidle, M., Merckelbach, A., Hehmann, G., Klee, D., Büchs, J., Kang, H. A., & Gellissen, G. (2009). Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment. Microbial Cell Factories, 8, 22.CrossRefGoogle Scholar
  3. 3.
    Sudar, M., Valinger, D., Findrik, Z., Vasic-Racki, D., & Kurtanjek, Z. (2013). Effect of different variables on the efficiency of Baker’s yeast cell disruption process to obtain alcohol dehydrogenase activity. Applied Biochemistry and Biotechnology, 169, 1039–1055.CrossRefGoogle Scholar
  4. 4.
    Middelberg, A. P. J. (2012). Releasing biopharmaceutical products from cells. In G. Subramanian (ed.), Biopharmaceutical Production Technology (pp. 79–105). John Wiley & Sons.Google Scholar
  5. 5.
    Salazar, O., & Asenjo, J. A. (2007). Enzymatic lysis of microbial cells. Biotechnology Letters, 29, 985–994.CrossRefGoogle Scholar
  6. 6.
    Garcia, F. A. P. (2013). Cell wall disruption and lysis. In M. C. Flickinger (Ed.), Downstream Industrial Biotechnology: Recovery and Purification, First Edition (pp. 81–94). John Wiley & Sons, Inc.Google Scholar
  7. 7.
    Balasundaram, B., Harrison, S., & Bracewell, G. B. (2009). Advances in product release strategies and impact on bioprocess design. Trends in Biotechnology, 27, 477–485.CrossRefGoogle Scholar
  8. 8.
    Klis, F. M., Boorsma, A., & De Groot, P. W. (2006). Cell wall construction in Saccharomyces cerevisiae. Yeast, 23, 185–202.CrossRefGoogle Scholar
  9. 9.
    De Nobel, J. G., & Barnett, J. A. (1991). Passage of molecules through yeast cell walls: a brief essay-review. Yeast, 7, 313–323.CrossRefGoogle Scholar
  10. 10.
    Zlotnik, H., Fernandez, M. P., Bowers, B., & Cabib, E. (1984). Saccharomyces cerevisiae mannoproteins form an external layer that determinates wall porosity. Journal of Bacteriology, 159, 1018–1026.Google Scholar
  11. 11.
    Klimek-Ochab, M., Brzezińska-Rodak, M., Żymańczyk-Duda, E., Lejczak, B., & Kafarski, P. (2011). Comparative study of fungal cell disruption—scope and limitations of the methods. Folia Microbiologia (Praha), 56(5), 469–475.CrossRefGoogle Scholar
  12. 12.
    Garcia-Ortega, X., Reyes, C., Montesinos, J. L., & Valero, F. (2015). Overall key performance indicator to optimizing operation of high-pressure homogenizers for a reliable quantification of intracellular components in Pichia pastoris. Frontiers in Bioengineering and Biotechnology, 3, 107.CrossRefGoogle Scholar
  13. 13.
    Naglak, T.J., & Wang, H. (1990). Protein release from the yeast Pichia pastoris by chemical permeabilisation: comparison to mechanical disruption and enzymatic lysis. In D.L. Pyle (ed.), Separation for Biotechnology 2 (55–64). Springer.Google Scholar
  14. 14.
    Shepard, S. R., Stone, C., Cook, S., Bouvier, A., Boyd, G., Weatherly, G., Lydiard, D., & Schrimsher, J. (2002). Recovery of intracellular recombinant proteins from the yeast Pichia pastoris by cell permeabilisation. Journal of Biotechnology, 99, 149–160.CrossRefGoogle Scholar
  15. 15.
    Ferrara, M. A., Bonomo Severino, N. M., Valente, R. H., Perales, J., & Bon, E. P. S. (2010). High-yield extraction of periplasmic asparaginase produced by recombinant Pichia pastoris harboring the Saccharomyces cerevisiae ASP3gene. Enzyme and Microbial Technology, 47, 71–76.CrossRefGoogle Scholar
  16. 16.
    Shen, S.-H., Bastien, L., Nguyen, T., Fung, M., & Slilaty, S. N. (1989). Synthesis and secretion of hepatitis B middle surface antigen by the methylotrophic yeast Hansenula polymorpha. Gene, 84, 303–309.CrossRefGoogle Scholar
  17. 17.
    Asenjo, J. A., Ventom, A. M., Huang, R. B., & Andrews, B. A. (1993). Selective release of recombinant protein particles (VLPs) from yeast using a pure lytic glucanase enzyme. Nature Biotechnology, 11, 214–217.CrossRefGoogle Scholar
  18. 18.
    Weaver, J. C., & Chizmadzhev, Y. A. (1996). Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics, 41, 135–160.CrossRefGoogle Scholar
  19. 19.
    Rols, M. P., & Teissie, J. (1990). Electropermeabilisation of mammalian cells. Quantitative analysis of the phenomenon. Biophysical Journal, 58, 1089–1098.CrossRefGoogle Scholar
  20. 20.
    Vorobiev, E., & Lebovka, N.(2011). Pulsed electric field assisted extraction, In N. Lebovka, E. Vorobiev, F. Chemat (eds.), Enhancing extraction processes in the food industry (pp 25–84). CRC Press.Google Scholar
  21. 21.
    Bobinaite, R., Pataro, G., Lamanauskas, N., Satkauskas, S., Viskelis, P., & Ferrari, G. (2015). Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. Journal of Food Science and Technology, 52(9), 5898–5905.CrossRefGoogle Scholar
  22. 22.
    Golberg, A., Sack, M., Teissie, J., Pataro, G., Pliquett, U., Saulis, G., Stefan, T., Miklavcic, D., Vorobiev, E., & Frey, W. (2016). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. Biotechnology for Biofuels, 9, 94.CrossRefGoogle Scholar
  23. 23.
    Parniakov, O., Barba, F. J., Grimi, N., Lebovka, N., & Vorobiev, E. (2016). Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chemistry, 192, 842–848.CrossRefGoogle Scholar
  24. 24.
    Lindmark, J., Lagerkvist, A., Nilsson, E., Carlsson, M., Thorin, E., & Dahlqvist, E. (2014). Evaluating the effects of electroporation pre-treatment on the biogas yield from leycrop silage. Applied Biochemistry and Biotechnology, 174, 2616–2625.CrossRefGoogle Scholar
  25. 25.
    Ganeva, V., Galutzov, B., & Teissie, J. (2003). High yield electroextraction of proteins by a flow process. Analytical Biochemistry, 315, 77–84.CrossRefGoogle Scholar
  26. 26.
    Ganeva, V., Galutzov, B., & Teissie, J. (2004). Flow process for electroextraction of intracellular enzymes from the fission yeast Schizosaccharomyces pombe. Biotechnology Letters, 26, 933–937.CrossRefGoogle Scholar
  27. 27.
    Ganeva, V., Galutzov, B., & Teissie, J. (2014). Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells. Applied Biochemistry and Biotechnology, 172, 1540–1552.CrossRefGoogle Scholar
  28. 28.
    Ganeva, V., Stefanova, D., Angelova, B., Galutzov, B., Velasco, I., & Arevalo-Rodrigez, M. (2015). Electroinduced release of recombinant β-galactosidase from Saccharomyces cerevisiae. Journal of Biotechnology, 211, 12–19.CrossRefGoogle Scholar
  29. 29.
    Eilert, E., Hollenberg, C. P., Piontek, M., & Suckow, M. (2012). The use of highly expressed FTH1 as carrier protein for cytosolic targeting in Hansenula polymorpha. Journal of Biotechnology, 159, 172–176.CrossRefGoogle Scholar
  30. 30.
    Ganeva, V., Galutzov, B., & Teissie, J. (1995). Electric field mediated loading of macromolecules is critically controlled at the wall level. Biochimica et Biophysica Acta-Biomembranes, 1240(2), 229–236.CrossRefGoogle Scholar
  31. 31.
    Pringle, J. R., & Mor, J.-R. (1975). Methods for monitoring the growth of yeast cultures and dealing with the clamping problems. Methods in Cell Biology, 11, 131–168.CrossRefGoogle Scholar
  32. 32.
    Bradford, M. (1976). A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  33. 33.
    Nesterenko, M. V., Tilley, V., & Upton, S. J. (1994). A simple modification of Blum’s silver staining method allows for 30 min detection of proteins in polyacrylamide gels. Journal of Biochemical and Biophysical Methods, 28, 239–242.Google Scholar
  34. 34.
    Aguilar-Uscanga, B., & Francois, J. M. (2003). A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Letters in Applied Microbiology, 37, 268–274.Google Scholar
  35. 35.
    Giuseppin, M. L. F., van Eijk, H. M. J., Hellendoorn, M., & van Almkerk, J. W. (1987). Cell wall strength of Hansenula polymorpha in continuous cultures in relation to recovery of methanol oxidase (MOX). Applied Microbiology and Biotechnology, 27(1), 31–36.Google Scholar
  36. 36.
    Canales, M., Buxado, J. A., Heynngnezz, L., & Entriquez, A. (1998). Mechanical disruption of Pichia pastoris yeast to recover the recombinant glycoprotein Bm86. Enzyme and Microbial Technology, 23(1–2), 58–83.Google Scholar
  37. 37.
    Lee, J. L., Song, H. S., Kim, H. J., Park, J. H., Chung, D. K., Park, C. S., Jeoung, D., & Ki, H. Y. (2003). Functional expression and production of human H-ferritin in Pichia pastorisBiotechnology Letters, 25(13), 1019–1023.Google Scholar
  38. 38.
    Seo, H.-Y., Chang, Y.-J., Chung, Y. J., & Kim, K. S. (2008). Proteomic analysis of recombinant Saccharomyces cerevisiae upon iron deficiency induced via human H-ferritin production. Journal of Microbiology and Biotechnology, 18(8), 1368–1376.Google Scholar
  39. 39.
    Lee, J. L., Levin, R. E., & Kim, H. Y. (2008). Improved co-expression and multi-assembly properties of recombinant human ferritins subunit in Escherichia coliJournal of Microbiology and Biotechnology, 18(5), 926–932.Google Scholar
  40. 40.
    Butts, C. A., Swift, J., Kang, S.-G., Di Costanzo, L., Christianson, D. W., Saven, J. G., & Dmochowski, I. J. (2008). Direct noble metal ion chemistry within a designed ferritin protein. Biochemistry, 47, 12729–12739.Google Scholar
  41. 41.
    Hristozova, T., Michailova, L., Dmitriev, V., Tsiomenko, A., Roshkova, Z., & Tuneva, D. (1994). Investigation of mannan and glycan in the cell wall of Candida boudinii cultivated on methanol. Antonie Van Leeuwenhoek, 65, 13–20.Google Scholar
  42. 42.
    Kim, M. W., Rhee, S. K., Kim, J.-Y., Schimma, Y., Chiba, Y., & Kang, H. A. (2004). Characterization of N-linked oligosaccharides assembled on secretory recombinant glucose oxidase and cell wall mannoproteins from methylotrophic yeast Hansenula polymorphaGlycobiology, 14(3), 243–251.Google Scholar
  43. 43.
    Schein, C. H., & Noteborn, M. H. M. (1988). Formation of soluble recombinant proteins in E. coli is favored by lower growth temperatures. Nature Biotechnology, 6, 291–294.Google Scholar
  44. 44.
    Sörensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coliMicrobial Cell Factories, 4(1), 1–8.Google Scholar
  45. 45.
    Hackel, B. J., Huang, D., Bubolz, J. C., Wang, X. X., & Shusta, E. V. (2006). Production of soluble and active transferrin receptor-targeting single-chain antibody using Saccharomyces cerevisiaePharmaceutical Research, 23(4), 790–797.Google Scholar
  46. 46.
    Li, Z., Xiong, F., Lin, Q., d’Anjou, M., Daugulis, A. J., Yang, D. S., & Hew, C. L. (2001). Low-temperature increases the yield of biologically active herring antifreeze protein in Pichia pastorisProtein Expression and Purification, 21(3), 438–445.Google Scholar
  47. 47.
    van der Klei, I. J., Yurimoto, H., Sakai, Y., & Veenhuis, M. (2006). The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochimica et Biophysica Acta, 1763, 1453–1462.CrossRefGoogle Scholar
  48. 48.
    Scott, J. H., & Schekman, R. (1980). Lyticase: endoglucanase and protease activities that act together in yeast cell lysis. Journal of Bacteriology, 142(2), 414–423.Google Scholar
  49. 49.
    He, D., & Marles-Wright, J. (2015). Ferritin family proteins and their use in bionanotechnology. New Biotechnology, 32(6), 651–657.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department Biophysics & Radiobiology, Biological FacultySofia UniversitySofiaBulgaria
  2. 2.ARTES Biotechnology GmbHLangenfeldGermany

Personalised recommendations