Applied Biochemistry and Biotechnology

, Volume 184, Issue 1, pp 303–322 | Cite as

A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells

  • Sultan Gulce IzEmail author
  • Muge Anil Inevi
  • Pelin Saglam Metiner
  • Duygu Ayyildiz Tamis
  • Nazli Kisbet


Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid with polyethylenimine (PEI) reagent at the ratio of 1:6 (DNA:PEI). In conclusion, the anti-apoptotic efficacy of the Bcl-xL expressing plasmid in humanized anti-TNF-α MAb producing stable CHO cells is compatible with curative effect for high efficiency recombinant protein production. Thus, this model can be used for large-scale production of biosimilars through transient Bcl-xL gene expression as a cost-effective method.


Anti-apoptotic cell engineering Bcl-xL Chinese hamster ovary cells Polyethylenimine (PEI) Transient gene expression (TGE) 



This study has been partly funded by TUBITAK through 2209-A project number 1919B011402737 under the supervision of Sultan GULCE IZ, PhD.


  1. 1.
    Reichert, J. M. (2008). Monoclonal antibodies as innovative therapeutics. Current Pharmaceutical Biotechnology, 9, 423–430.CrossRefGoogle Scholar
  2. 2.
    Reichert, J. M., Rosensweig, C. J., Faden, L. B., & Dewitz, M. C. (2005). Monoclonal antibody successes in the clinic. Nature Biotechnology, 23, 1073–1078.CrossRefGoogle Scholar
  3. 3.
    Rodrigues, M. E., Costa, A. R., Henriques, M., Azeredo, J., & Oliveira, R. (2013). Advanced and drawbacks of adaptation to serum-free culture of CHO-K1 cells for monoclonal antibody production. Applied Biochemistry and Biotechnology, 169, 1279–1291.CrossRefGoogle Scholar
  4. 4.
    Nelson, A. L., Dhimolea, E., & Reichert, J. M. (2010). Development trends for human monoclonal antibody therapeutics. Nature Reviews Drug Discovery, 9, 767–774.CrossRefGoogle Scholar
  5. 5.
    Farid, S. S. (2008). Economic drivers and trade-offs in antibody purification processes. BioPharm International, 21, 37–42.Google Scholar
  6. 6.
    Farid, S. S. (2007). Process economics of industrial monoclonal antibody manufacture. Journal of Chromatography B, 848, 8–18.CrossRefGoogle Scholar
  7. 7.
    Bradley, J. (2008). TNF-mediated inflammatory disease. The Journal of Pathology, 214, 149–160.CrossRefGoogle Scholar
  8. 8.
    Parameswaran, N., & Patial, S. (2010). Tumor necrosis factor-α signaling in macrophages. Critical Reviews™ Eukaryotic Gene Expression, 20(2), 87–103.CrossRefGoogle Scholar
  9. 9.
    Clark, I. A. (2007). How TNF was recognized as a key mechanism of disease. Cytokine & Growth Factor Reviews, 18, 335–343.CrossRefGoogle Scholar
  10. 10.
    Balabashin, D., Kovalenko, E., Toporova, V., Aliev, T., Panina, A., Svirshchevskaya, E., Dolgikh, D., & Kirpichnikov, M. (2015). Production of anti TNF-α antibodies in eukaryotic cells using different combinations of vectors carrying heavy and light chains. Cytotechnology, 67, 761–772.CrossRefGoogle Scholar
  11. 11.
    Horiuchi, T., Mitoma, H., Harashima, S.-I., Tsukamoto, H., & Shimoda, T. (2010). Transmembrane TNF-α: structure, function and interaction with anti-TNF agents. Rheumatology, 49, 1215–1228.CrossRefGoogle Scholar
  12. 12.
    Jayapal, K. P., Wlaschin, K. F., Hu, W. S., & Yap, M. G. S. (2007). Recombinant protein therapeutics from CHO cells—20 years and counting. Chemical Engineering Progress, 103(10), 40–47.Google Scholar
  13. 13.
    Lis, K., Kuzawińska, O., & Bałkowiec-Iskra, E. (2014). Tumor necrosis factor inhibitors—state of knowledge. Archives of Medical Science, 10, 1175–1185.CrossRefGoogle Scholar
  14. 14.
    (2012). Biologic drugs set to top 2012 sales. Nat Med, 18 , 636–636.Google Scholar
  15. 15.
    Willrich, M. A., Murray, D. L., & Snyder, M. R. (2015). Tumor necrosis factor inhibitors: clinical utility in autoimmune diseases. Translational Research, 165, 270–282.CrossRefGoogle Scholar
  16. 16.
    Ghaderi, D., Zhang, M., Hurtado-Ziola, N., & Varki, A. (2012). Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnology and Genetic Engineering Reviews, 28, 147–176.CrossRefGoogle Scholar
  17. 17.
    Swiech, K., Picanço-Castro, V., & Covas, D. T. (2012). Human cells: new platform for recombinant therapeutic protein production. Protein Expression and Purification, 84, 147–153.CrossRefGoogle Scholar
  18. 18.
    Estes, S., & Melville, M. (2013). Advances in biochemical engineering biotechnology, vol 139: mammalian cell cultures for biologics manufacturing. In W. Zhou & A. Kantardjieff (Eds.), Mammalian cell line developments in speed and efficiency (pp. 11–33). Berlin Heidelberg: Springer-Verlag.Google Scholar
  19. 19.
    Kim, J. Y., Kim, Y.-G., & Lee, G. M. (2012). CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Applied Microbiology and Biotechnology, 93, 917–930.CrossRefGoogle Scholar
  20. 20.
    Barnes, L. M., Bentley, C. M., & Dickson, A. J. (2001). Characterization of the stability of recombinant protein production in the GS-NS0 expression system. Biotechnology and Bioengineering, 73, 261–270.CrossRefGoogle Scholar
  21. 21.
    Page, M. J., & Sydenham, M. A. (1991). High level expression of the humanized monoclonal antibody Campath-1H in Chinese hamster ovary cells. Nature Biotechnology, 9, 64–68.CrossRefGoogle Scholar
  22. 22.
    Al-Rubeai, M. (1998). Advances in biochemical engineering biotechnology, vol 59: bioprocess and algae reactor technology, apoptosis. In T. Scheper (Ed.), Apoptosis and cell culture technology (pp. 225–249). Berlin Heidelberg: Springer-Verlag.Google Scholar
  23. 23.
    Arden, N., & Betenbaugh, M. J. (2004). Life and death in mammalian cell culture: strategies for apoptosis inhibition. Trends in Biotechnology, 22, 174–180.CrossRefGoogle Scholar
  24. 24.
    Al-Rubeai, M., & Singh, R. P. (1998). Apoptosis in cell culture. Current Opinion in Biotechnology, 9, 152–156.CrossRefGoogle Scholar
  25. 25.
    Goswami, J., Sinskey, A., Steller, H., Stephanopoulos, G., & Wang, D. (1999). Apoptosis in batch cultures of Chinese hamster ovary cells. Biotechnology and Bioengineering, 62, 632–640.CrossRefGoogle Scholar
  26. 26.
    Morrow, K. J. (2007). Advances in antibody manufacturing using mammalian cells. Biotechnology Annual Review, 13, 95–113.CrossRefGoogle Scholar
  27. 27.
    Chiang, G. G., & Sisk, W. P. (2005). Bcl-xL mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnology and Bioengineering, 91, 779–792.CrossRefGoogle Scholar
  28. 28.
    Charbonneau, J., & Gauthier, E. (2001). Protection of hybridoma cells against apoptosis by a loop domain-deficient Bcl-xL protein. Cytotechnology, 37, 41–47.CrossRefGoogle Scholar
  29. 29.
    Jung, D., Côté, S., Drouin, M., Simard, C., & Lemieux, R. (2002). Inducible expression of Bcl-XL restricts apoptosis resistance to the antibody secretion phase in hybridoma cultures. Biotechnology and Bioengineering, 79, 180–187.CrossRefGoogle Scholar
  30. 30.
    Figueroa Jr., B., Sauerwald, T., Oyler, G., Hardwick, J. M., & Betenbaugh, M. J. (2003). A comparison of the properties of a Bcl-x L variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures. Metabolic Engineering, 5, 230–245.CrossRefGoogle Scholar
  31. 31.
    Tey, B., Singh, R., Piredda, L., Piacentini, M., & Al-Rubeai, M. (2000). Bcl-2 mediated suppression of apoptosis in myeloma NS0 cultures. Journal of Biotechnology, 79, 147–159.CrossRefGoogle Scholar
  32. 32.
    Fussenegger, M., Fassnacht, D., Schwartz, R., Zanghi, J. A., Graf, M., Bailey, J. E., & Pörtner, R. (2000). Regulated overexpression of the survival factor bcl-2 in CHO cells increases viable cell density in batch culture and decreases DNA release in extended fixed-bed cultivation. Cytotechnology, 32, 45–61.CrossRefGoogle Scholar
  33. 33.
    Mastrangelo, A. J., Hardwick, J. M., Zou, S., & Betenbaugh, M. J. (2000). Part II. Overexpression of bcl-2 family members enhances survival of mammalian cells in response to various culture insults. Biotechnology and Bioengineering, 67, 555–564.CrossRefGoogle Scholar
  34. 34.
    Dorai, H., Kyung, Y. S., Ellis, D., Kinney, C., Lin, C., Jan, D., Moore, G., & Betenbaugh, M. J. (2009). Expression of anti-apoptosis genes alters lactate metabolism of Chinese hamster ovary cells in culture. Biotechnology and Bioengineering, 103, 592–608.CrossRefGoogle Scholar
  35. 35.
    Zustiak, M. P., Jose, L., Xie, Y., Zhu, J., & Betenbaugh, M. J. (2014). Enhanced transient recombinant protein production in CHO cells through the co-transfection of the product gene with Bcl-xL. Biotechnology Journal, 9, 1164–1174.CrossRefGoogle Scholar
  36. 36.
    Hauser, H. and Wagner, R. (2014). Animal cell biotechnology: In Biologics Production, 1st ed., Walter de Gruyter GmbH & Co KG.Google Scholar
  37. 37.
    Bos, A. B., Duque, J. N., Bhakta, S., Farahi, F., Chirdon, L. A., Junutula, J. R., Harms, P. D., & Wong, A. W. (2014). Development of a semi-automated high throughput transient transfection system. Journal of Biotechnology, 180, 10–16.CrossRefGoogle Scholar
  38. 38.
    Codamo, J., Munro, T. P., Hughes, B. S., Song, M., & Gray, P. P. (2011). Enhanced CHO cell-based transient gene expression with the epi-CHO expression system. Molecular Biotechnology, 48, 109–115.CrossRefGoogle Scholar
  39. 39.
    Hacker, D. L., Kiseljak, D., Rajendra, Y., Thurnheer, S., Baldi, L., & Wurm, F. M. (2013). Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expression and Purification, 92, 67–76.CrossRefGoogle Scholar
  40. 40.
    Lee, S., & Lee, G. M. (2013). Bcl-2 overexpression in CHO cells improves polyethylenimine-mediated gene transfection. Process Biochemistry, 48, 1436–1440.CrossRefGoogle Scholar
  41. 41.
    Sou, S. N., Polizzi, K. M., & Kontoravdi, C. (2013). Evaluation of transfection methods for transient gene expression in Chinese hamster ovary cells. Advances in Bioscience and Biotechnology, 4, 1013–1019.CrossRefGoogle Scholar
  42. 42.
    Ehrhardt, C., Schmolke, M., Matzke, A., Knoblauch, A., Will, C., Wixler, V., & Ludwig, S. (2006). Polyethylenimine, a cost-effective transfection reagent. Signal Transduction, 6, 179–184.CrossRefGoogle Scholar
  43. 43.
    Longo, P. A., Kavran, J. M., Kim, M.-S., & Leahy, D. J. (2013). Transient mammalian cell transfection with polyethylenimine (PEI). Methods in Enzymology, 529, 227.CrossRefGoogle Scholar
  44. 44.
    Zaric, V., Weltin, D., Erbacher, P., Remy, J. S., Behr, J. P., & Stephan, D. (2004). Effective polyethylenimine-mediated gene transfer into human endothelial cells. The Journal of Gene Medicine, 6, 176–184.CrossRefGoogle Scholar
  45. 45.
    Obata, Y., Ciofani, G., Raffa, V., Cuschieri, A., Menciassi, A., Dario, P., & Takeoka, S. (2010). Evaluation of cationic liposomes composed of an amino acid-based lipid for neuronal transfection. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 70–77.CrossRefGoogle Scholar
  46. 46.
    Gulce Iz, S., Calimlioglu, B., & Deliloglu, S. I. D. (2012). Using Bcl-xL anti-apoptotic protein for altering target cell apoptosis. Electronic Journal of Biotechnology, 15(5), 2–2.CrossRefGoogle Scholar
  47. 47.
    Bertrand, R., Solary, E., O’Connor, P., Kohn, K. W., & Pommier, Y. (1994). Induction of a common pathway of apoptosis by staurosporine. Experimental Cell Research, 211, 314–321.CrossRefGoogle Scholar
  48. 48.
    Nalbantsoy, A., Karaboz, I., Ivanova, R., & Deliloglu Gurhan, I. (2010). Isolation and purification of O and H antigens from Salmonella Enteritidis as diagnostic tools. Annals of Microbiology, 60, 565–571.CrossRefGoogle Scholar
  49. 49.
    Ayyildiz Tamis, D., Deliloglu Gurhan S.I. (2016). Optimization of humanized monoclonal antibody against human tumor necrosis factor-α production. PhD Thesis, Ege University, Institute of Science, Thesis reference number: 10117485.Google Scholar
  50. 50.
    Toledo, J. R., Prieto, Y., Oramas, N., & Sánchez, O. (2009). Polyethylenimine-based transfection method as a simple and effective way to produce recombinant lentiviral vectors. Applied Biochemistry and Biotechnology, 157, 538–544.CrossRefGoogle Scholar
  51. 51.
    Haldankar, R., Li, D., Saremi, Z., Baikalov, C., & Deshpande, R. (2006). Serum-free suspensin large-scale transient transfection of CHO cells in WAVE bioreactors. Molecular Biotechnology, 34, 191–199.CrossRefGoogle Scholar
  52. 52.
    Rosser, M. P., Xia, W., Hartsell, S., McCAMAN, M., Zhu, Y., Wang, S., Harvey, S., Bringmann, P., & Cobb, R. R. (2005). Transient transfection of CHO-K1-S using serum-free medium in suspension: a rapid mammalian protein expression system. Protein Expression and Purification, 40, 237–243.CrossRefGoogle Scholar
  53. 53.
    Ye, J., Kober, V., Tellers, M., Naji, Z., Salmon, P., & Markusen, J. F. (2009). High-level protein expression in scalable CHO transient transfection. Biotechnology and Bioengineering, 103, 542–551.CrossRefGoogle Scholar
  54. 54.
    Galbraith, D. J., Tait, A. S., Racher, A. J., Birch, J. R., & James, D. C. (2006). Control of culture environment for improved Polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells. Biotechnology Progress, 22, 753–762.CrossRefGoogle Scholar
  55. 55.
    Thuret, G., Chiquet, C., Herrag, S., Dumollard, J., Boudard, D., Bednarz, J., Campos, L., & Gain, P. (2003). Mechanisms of staurosporine induced apoptosis in a human corneal endothelial cell line. British Journal of Ophthalmology, 87, 346–352.CrossRefGoogle Scholar
  56. 56.
    Delafosse, L., Xu, P., & Durocher, Y. (2016). Comparative study of polyethylenimines for transient gene expression in mammalian HEK293 and CHO cells. Journal of Biotechnology, 227, 103–111.CrossRefGoogle Scholar
  57. 57.
    Wang, W., Li, W., Ma, N., & Steinhoff, G. (2013). Non-viral gene delivery methods. Current Pharmaceutical Biotechnology, 14, 46–60.Google Scholar
  58. 58.
    Yin, H., Kanasty, R. L., Eltoukhy, A. A., Vegas, A. J., Dorkin, J. R., & Anderson, D. G. (2014). Non-viral vectors for gene-based therapy. Nature Reviews Genetics, 15, 541–555.CrossRefGoogle Scholar
  59. 59.
    Derouazi, M., Girard, P., Van Tilborgh, F., Iglesias, K., Muller, N., Bertschinger, M., & Wurm, F. M. (2004). Serum-free large-scale transient transfection of CHO cells. Biotechnology and Bioengineering, 87, 537–545.CrossRefGoogle Scholar
  60. 60.
    Abbott, W. M., Middleton, B., Kartberg, F., Claesson, J., Roth, R., & Fisher, D. (2015). Optimisation of a simple method to transiently transfect a CHO cell line in high-throughput and at large scale. Protein Expression and Purification, 116, 113–119.CrossRefGoogle Scholar
  61. 61.
    Singh, R. P., Emery, A. N., & Al-Rubeai, M. (1996). Enhancement of survivability of mammalian cells by overexpression of the apoptosis-suppressor gene bcl-2. Biotechnology and Bioengineering, 52, 166–175.CrossRefGoogle Scholar
  62. 62.
    Fassnacht, D., Rössing, S., Singh, R., Al-Rubeai, M., & Pörtner, R. (1999). Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma. Cytotechnology, 30, 95–106.CrossRefGoogle Scholar
  63. 63.
    Meents, H., Enenkel, B., Eppenberger, H. M., Werner, R. G., & Fussenegger, M. (2002). Impact of coexpression and coamplification of sICAM and antiapoptosis determinants bcl-2/bcl-xL on productivity, cell survival, and mitochondria number in CHO-DG44 grown in suspension and serum-free media. Biotechnology and Bioengineering, 80, 706–716.CrossRefGoogle Scholar
  64. 64.
    Templeton, N., Lewis, A., Dorai, H., Qian, E. A., Campbell, M. P., Smith, K. D., Lang, S. E., Betenbaugh, M. J., & Young, J. D. (2014). The impact of anti-apoptotic gene Bcl-2∆ expression on CHO central metabolism. Metabolic Engineering, 25, 92–102.CrossRefGoogle Scholar
  65. 65.
    Figueroa, B., Chen, S., Oyler, G. A., Hardwick, J. M., & Betenbaugh, M. J. (2004). Aven and Bcl-xL enhance protection against apoptosis for mammalian cells exposed to various culture conditions. Biotechnology and Bioengineering, 85, 589–600.CrossRefGoogle Scholar
  66. 66.
    Majors, B. S., Betenbaugh, M. J., Pederson, N. E., & Chiang, G. G. (2008). Enhancement of transient gene expression and culture viability using Chinese hamster ovary cells overexpressing Bcl-xL. Biotechnology and Bioengineering, 101, 567–578.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Bioengineering, Faculty of EngineeringEge UniversityIzmirTurkey
  2. 2.Department of Biotechnology and BioengineeringIzmir Institute of TechnologyIzmirTurkey
  3. 3.Turgut Ilaclari A.SIstanbulTurkey
  4. 4.GlaxoSmithKlineIstanbulTurkey

Personalised recommendations