Applied Biochemistry and Biotechnology

, Volume 184, Issue 1, pp 168–181 | Cite as

Single Cell Oil Production from Hydrolysates of Inulin by a Newly Isolated Yeast Papiliotrema laurentii AM113 for Biodiesel Making

  • Guangyuan WangEmail author
  • Lin Liu
  • Wenxing LiangEmail author


Microbial oils are among the most attractive alternative feedstocks for biodiesel production. In this study, a newly isolated yeast strain, AM113 of Papiliotrema laurentii, was identified as a potential lipid producer, which could accumulate a large amount of intracellular lipids from hydrolysates of inulin. P. laurentii AM113 was able to produce 54.6% (w/w) of intracellular oil in its cells and 18.2 g/l of dry cell mass in a fed-batch fermentation. The yields of lipid and biomass were 0.14 and 0.25 g per gram of consumed sugar, respectively. The lipid productivity was 0.092 g of oil per hour. Compositions of the fatty acids produced were C14:0 (0.9%), C16:0 (10.8%), C16:1 (9.7%), C18:0 (6.5%), C18:1 (60.3%), and C18:2 (11.8%). Biodiesel obtained from the extracted lipids could be burnt well. This study not only provides a promising candidate for single cell oil production, but will also probably facilitate more efficient biodiesel production.


Papiliotrema laurentii Single cell oil Hydrolysates of inulin Biodiesel 



This work was supported by the Project of Shandong Province Higher Educational Science and Technology Program (J15LE15), Research Foundation for Advanced Talents of Qingdao Agricultural University (6631114335), Petrochemical Joint Fund of National Natural Science Foundation of China (U1462109), and the Taishan Scholar Construction Foundation of Shandong Province (6631114314).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113(8), 1031–1051.CrossRefGoogle Scholar
  2. 2.
    Wang, G., Guo, L., Liang, W., Chi, Z., & Liu, L. (2017). Systematic analysis of the lysine acetylome reveals diverse functions of lysine acetylation in the oleaginous yeast Yarrowia lipolytica. AMB Express. doi: 10.1186/s13568-017-0393-2.
  3. 3.
    Huang, C., Chen, X. F., Xiong, L., Chen, X. D., Ma, L. L., & Chen, Y. (2013). Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances, 31(2), 129–139.CrossRefGoogle Scholar
  4. 4.
    Liang, Y., Jarosz, K., Wardlow, A. T., Zhang, J., & Cui, Y. (2014). Lipid production by Cryptococcus curvatus on hydrolysates derived from corn fiber and sweet sorghum bagasse following dilute acid pretreatment. Applied Biochemistry and Biotechnology, 173(8), 2086–2098.CrossRefGoogle Scholar
  5. 5.
    Helwani, Z., Othman, M. R., Aziz, N., Fernando, W. J. N., & Kim, J. (2009). Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Processing Technology, 90(12), 1502–1514.CrossRefGoogle Scholar
  6. 6.
    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1–5.CrossRefGoogle Scholar
  7. 7.
    Zeng, L., He, Y., Jiao, L., Li, K., & Yan, Y. (2017). Preparation of biodiesel with liquid synergetic lipases from rapeseed oil deodorizer distillate. Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-017-2463-y.
  8. 8.
    Li, M., Liu, G. L., Chi, Z., & Chi, Z. M. (2010). Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass & Bioenergy, 34(1), 101–107.CrossRefGoogle Scholar
  9. 9.
    Ageitos, J. M., Vallejo, J. A., Veiga-Crespo, P., & Villa, T. G. (2011). Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology, 90(4), 1219–1227.CrossRefGoogle Scholar
  10. 10.
    Chen, X., Li, Z., Zhang, X., Hu, F., Ryu, D. D., & Bao, J. (2009). Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Applied Biochemistry and Biotechnology, 159(3), 591–604.CrossRefGoogle Scholar
  11. 11.
    da Silva, T. L., Feijão, D., & Reis, A. (2010). Using multi-parameter flow cytometry to monitor the yeast Rhodotorula glutinis CCMI 145 batch growth and oil production towards biodiesel. Applied Biochemistry and Biotechnology, 162(8), 2166–2176.CrossRefGoogle Scholar
  12. 12.
    Tampitak, S., Louhasakul, Y., Cheirsilp, B., & Prasertsan, P. (2015). Lipid production from hemicellulose and holocellulose hydrolysate of palm empty fruit bunches by newly isolated oleaginous yeasts. Applied Biochemistry and Biotechnology, 176(6), 1801–1814.CrossRefGoogle Scholar
  13. 13.
    Sitepu, I. R., Garay, L. A., Sestric, R., Levin, D., Block, D. E., German, J. B., & Boundy-Mills, K. L. (2014). Oleaginous yeasts for biodiesel: current and future trends in biology and production. Biotechnology Advances, 32(7), 1336–1360.CrossRefGoogle Scholar
  14. 14.
    Christophe, G., Deo, J. L., Kumar, V., & Nouaille, R. (2012). Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Applied Biochemistry and Biotechnology, 167(5), 1270–1279.CrossRefGoogle Scholar
  15. 15.
    Chi, Z., Zhang, T., Liu, G., & Yue, L. (2009). Inulinase-expressing microorganisms and applications of inulinases. Applied Microbiology and Biotechnology, 82(2), 211–220.CrossRefGoogle Scholar
  16. 16.
    Faskin, M., Saghafian, A., Aydogan, M. N., & Arslan, N. (2015). Microbial lipid production by cold-adapted oleaginous yeast Yarrowia lipolytica B9 in non-sterile whey medium. Biofuels Bioproducts & Biorefining, 9(5), 595–605.CrossRefGoogle Scholar
  17. 17.
    Wei, Z., Zeng, G., Kosa, M., Huang, D., & Ragauskas, A. J. (2015). Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus. Applied Biochemistry and Biotechnology, 175(2), 1234–1246.CrossRefGoogle Scholar
  18. 18.
    Chi, Z., Zheng, Y., Jiang, A., & Chen, S. (2011). Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Applied Biochemistry and Biotechnology, 165(2), 442–453.CrossRefGoogle Scholar
  19. 19.
    Zhao, C. H., Chi, Z., Zhang, F., Guo, F. J., Li, M., Song, W. B., & Chi, Z. M. (2011). Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. Bioresource Technology, 102(10), 6128–6133.CrossRefGoogle Scholar
  20. 20.
    Wang, G. Y., Zhang, Y., Chi, Z., Liu, G. L., Wang, Z. P., & Chi, Z. M. (2015). Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109. Applied Microbiology and Biotechnology, 99(4), 1637–1645.CrossRefGoogle Scholar
  21. 21.
    Wang, G. Y., Chi, Z., Song, B., Wang, Z. P., & Chi, Z. M. (2012). High level lipid production by a novel inulinase-producing yeast Pichia guilliermondii Pcla22. Bioresource Technology, 124, 77–82.CrossRefGoogle Scholar
  22. 22.
    Wang, C. L., Yang, L., Xin, F. H., Liu, Y. Y., & Chi, Z. M. (2014). Evaluation of single cell oil from Aureobasidium pullulans var. melanogenum P10 isolated from mangrove ecosystems for biodiesel production. Process Biochemistry, 49(5), 725–731.CrossRefGoogle Scholar
  23. 23.
    Kurtzman, C. P., & Fell, J. W. (2000). The yeasts. A taxonomic study. 4th revised and enlarged ed (pp. 222–360). Amsterdam: Elsevier Science B.V.Google Scholar
  24. 24.
    Chi, Z., Ma, C., Wang, P., & Li, H. F. (2007). Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresource Technology, 98(3), 534–538.CrossRefGoogle Scholar
  25. 25.
    Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24(8), 1596–1599.CrossRefGoogle Scholar
  26. 26.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1955). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.CrossRefGoogle Scholar
  27. 27.
    Spiro, R. G. (1966). Analysis of sugars found in glycoproteins. Methods in Enzymology, 8, 3–26.CrossRefGoogle Scholar
  28. 28.
    Gong, F., Sheng, J., Chi, Z., & Li, J. (2007). Inulinase production by a marine yeast Pichia guilliermondii and inulin hydrolysis by the crude inulinase. Journal of Industrial Microbiology & Biotechnology, 34(3), 179–185.CrossRefGoogle Scholar
  29. 29.
    Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509.Google Scholar
  30. 30.
    Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable & Sustainable Energy Reviews, 16(1), 143–169.CrossRefGoogle Scholar
  31. 31.
    Tanimura, A., Takashima, M., Sugita, T., Endoh, R., Kikukawa, M., Yamaguchi, S., Sakuradani, E., Ogawa, J., & Shima, J. (2014). Selection of oleaginous yeasts with high lipid productivity for practical biodiesel production. Bioresource Technology, 153(2), 230–235.CrossRefGoogle Scholar
  32. 32.
    Athenstaedt, K., & Daum, G. (2006). The life cycle of neutral lipids: synthesis, storage and degradation. Cellular and Molecular Life Sciences, 63(12), 1355–1369.CrossRefGoogle Scholar
  33. 33.
    Athenstaedt, K. (2010). Isolation and characterization of lipid particles from yeast. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid Microbiology (pp. 4224–4229). Berlin, Heidelberg: Springer-Verlag.Google Scholar
  34. 34.
    Papanikolaou, S., Chatzifragkou, A., Fakas, S., Galiotou-Panayotou, M., Komaitis, M., Nicaud, J. M., & Aggelis, G. (2009). Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. European Journal of Lipid Science and Technology, 111(12), 1221–1232.CrossRefGoogle Scholar
  35. 35.
    Papanikolaou, S., Chevalot, I., Komaitis, M., Aggelis, G., & Marc, I. (2001). Kinetic profile of the cellular lipid composition in an oleaginous Yarrowia lipolytica capable of producing a cocoa-butter substitute from industrial fats. Antonie Van Leeuwenhoek, 80(3), 215–224.CrossRefGoogle Scholar
  36. 36.
    Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., Del Cardayre, S. B., & Keasling, J. D. (2010). Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 463(7280), 559–562.CrossRefGoogle Scholar
  37. 37.
    Zhao, C. H., Tong, Z., Mei, L., & Chi, Z. M. (2010). Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochemistry, 45(7), 1121–1126.CrossRefGoogle Scholar
  38. 38.
    Taskin, M., Ortucu, S., Aydogan, M. N., & Arslan, N. P. (2016). Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renewable Energy, 99, 198–204.CrossRefGoogle Scholar
  39. 39.
    Zhao, C. H., Cui, W., Liu, X. Y., Chi, Z. M., & Madzak, C. (2010). Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metabolic Engineering, 12(6), 510–517.CrossRefGoogle Scholar
  40. 40.
    Sajjadi, B., Raman, A. A. A., & Arandiyan, H. (2016). A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renewable & Sustainable Energy Reviews, 63, 62–92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of Life Sciences, Shandong Province Key Laboratory of Applied MycologyQingdao Agricultural UniversityQingdaoChina
  2. 2.College of Agronomy and Plant Protection, the Key Laboratory of Integrated Crop Pest Management of Shandong ProvinceQingdao Agricultural UniversityQingdaoChina

Personalised recommendations