Advertisement

Applied Biochemistry and Biotechnology

, Volume 183, Issue 4, pp 1455–1464 | Cite as

Enzymatic Properties of Alginate Lyase from Paenibacillus sp. S29

  • Masahiro KurakakeEmail author
  • Yuhei Kitagawa
  • Atsushi Okazaki
  • Kazuyuki Shimizu
Article

Abstract

Paenibacillus sp. S29 was isolated from soil and produces an alginate lyase. The molecular weight of this enzyme was 32 kDa and the N-terminal amino acid sequence was ASVTKST. The optimal pH was approximately 8.7 and the enzyme was stable over a pH range of 5.6 to 8.8 at 40 °C for 60 min. The optimal temperature was approximately 50 °C, and the residual activity was not decreased at temperatures of up to 40 °C at pH 8 for 30 min. Paenibacillus sp. S29 alginate lyase had also a little activity toward hyaluronic acid. Poly G and poly M separated from alginate were degraded efficiently, and poly M was the more susceptible substrate. The maximum amount of reducing sugar released by the enzyme was 261 mg per gram of sodium alginate. The main sugar released was monosaccharide (unsaturated uronate) and small amounts of oligosaccharides of degree of polymerization 2–6 were also released.

Keywords

Alginate lyase Sodium alginate Unsaturated uronate Oligosaccharide Brown algae 

References

  1. 1.
    Wong, T. Y., Preston, L. A., & Schiller, N. L. (2000). Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annual Review of Microbiology, 54, 289–340.CrossRefGoogle Scholar
  2. 2.
    Akiyama, H., Endo, T., Nakakita, R., Murata, K., Yonemoto, Y., & Okayama, K. (1992). Effect of depolymerized alginates on the growth of Bifidobacteria. Bioscience, Biotechnology, and Biochemistry, 56, 355–356.CrossRefGoogle Scholar
  3. 3.
    Kobayashi, N., Kanazawa, Y., Yamabe, S., Iwata, K., Nishizawa, M., Yamagishi, T., Nishikaze, O., & Tsuji, K. (1997). Effects of depolymerized sodium alginate on serum total cholesterol in healthy women with a high cholesterol intake. Journal of Home Economics of Japan, 48, 225–230.Google Scholar
  4. 4.
    Zhang, Z., Yu, G., Guan, H., Zhao, X., Du, Y., & Jiang, X. (2004). Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibrio sp. 510. Carbohydrate Research, 339, 1475–1481.CrossRefGoogle Scholar
  5. 5.
    Zhu, B., Tana, H., Qin, Y., Xu, Q., Du, Y., & Yin, H. (2015). Characterization of a new endo-type alginate lyase from Vibrio sp. W13. International Journal of Biological Macromolecules, 75, 330–337.CrossRefGoogle Scholar
  6. 6.
    Natsume, M., Kamo, Y., Hirayama, M., & Adachi, T. (1994). Isolation and characterization of alginate-derived oligosaccharides with root growth-promoting activities. Carbohydrate Research, 258, 187–197.CrossRefGoogle Scholar
  7. 7.
    Falkeborg, M., Cheong, L. Z., Gianfico, C., Sztukiel, K. M., Kristensen, K., Glasius, M., Xu, X., & Guo, Z. (2014). Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chemistry, 164, 185–194.CrossRefGoogle Scholar
  8. 8.
    Jagtap, S. S., Hehemann, J. H., Polz, M. F., Lee, J. K., & Zhao, H. (2014). Comparative biochemical characterization of three exolytic oligoalginate lyases from Vibrio splendidus reveals complementary substrate scope, temperature, and pH adaptations. Applied and Environmental Microbiology, 80, 4207–4214.CrossRefGoogle Scholar
  9. 9.
    Kim, H. T., Chung, J. H., Wang, D., Lee, J., Woo, H. C., Choi, I. G., & Kim, K. H. (2012). Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Applied Microbiology and Biotechnology, 93, 2233–2239.CrossRefGoogle Scholar
  10. 10.
    Takase, R., Ochiai, A., Mikami, B., Hashimoto, W., & Murata, K. (2010). Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp. A1. Biochimica et Biophysica Acta, General Subjects, 1804, 1925–1936.CrossRefGoogle Scholar
  11. 11.
    Lee, O. K., & Lee, E. Y. (2016). Sustainable production of bioethanol from renewable brown algae biomass. Biomass and Bioenergy, 92, 70–75.CrossRefGoogle Scholar
  12. 12.
    Gasesa, P., & Wusteman, F. S. (1990). Plate assay for simultaneous detection of alginate lyases and determination of substrate specificity. Applied and Environmental Microbiology, 56, 2265–2267.Google Scholar
  13. 13.
    Miller, G. L. (1959). Use of dinitrosalicilic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  14. 14.
    Iwamoto, Y., Araki, R., Iriyama, K., Oda, T., Fukuda, H., Hayashida, S., & Muramatsu, T. Purification and characterization of bifunctional alginate lyase from Alteromonas sp. strain no. 272 and its action on saturated oligomeric substrates. Bioscience, Biotechnology, and Biochemistry, 65, 133–142.Google Scholar
  15. 15.
    Li, J. W., Dong, S., Song, J., Li, C. B., Chen, X. L., Xie, B. B., & Zhang, Y. Z. (2011). Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524. Marine Drugs, 9, 109–123.CrossRefGoogle Scholar
  16. 16.
    Inoue, A., Takadono, K., Nishiyama, R., Tajima, K., Kobayashi, T., & Ojima, T. (2014). Characterization of an alginate lyase, FlAlyA, from Flavobacterium sp. strain UMI-01 and its expression in Escherichia coli. Marine Drugs, 12, 4693–4712.CrossRefGoogle Scholar
  17. 17.
    Swift, S M. Hudgens, J. W. Heselpoth, R. D. Bales, P. M., & Nelson, D. C. (2014). Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A. PLOS one, November 19.Google Scholar
  18. 18.
    Lee, S. I., Choi, S. H., Lee, E. Y., & Kim, H. S. (2012). Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2. Applied Microbiology and Biotechnology, 95, 1643–1653.CrossRefGoogle Scholar
  19. 19.
    Yamasaki, M., Moriwaki, S., Miyake, O., Hashimoto, W., Murata, K., & Mikami, B. (2004). It exhibited preferential β-elimination activity towards polyMG-block (100%) and then followed by polyM-block (16.8%) and polyG-block(1.83%). The Journal of Biological Chemistry, 279, 31863–31872.CrossRefGoogle Scholar
  20. 20.
    Badur, A. H., Jagtap, S. S., Yalamanchili, G., Lee, J. K., Zhao, H., & Rao, C. V. (2015). Characterization of the alginate lyases from Vibrio splendidus 12B01 are endolytic. Applied and Environmental Microbiology, 81, 1865–1873.CrossRefGoogle Scholar
  21. 21.
    Huang, L., Zhou, J., Li, X., Peng, Q., Lu, H., & Du, Y. (2013). Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. Journal of Industrial Microbiology & Biotechnology, 40, 113–122.CrossRefGoogle Scholar
  22. 22.
    Wang, D. M., Kim, H. T., Yun, E. J., Kim, D. H., Park, Y., Woo, H. C., & Kim, K. H. (2014). Optimal production of 4-deoxy-L-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Bioprocess and Biosystems Engineering, 37, 2105–2111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Masahiro Kurakake
    • 1
    Email author
  • Yuhei Kitagawa
    • 1
  • Atsushi Okazaki
    • 1
  • Kazuyuki Shimizu
    • 1
  1. 1.Department of Marine BiotechnologyFukuyama UniversityFukuyamaJapan

Personalised recommendations