Applied Biochemistry and Biotechnology

, Volume 183, Issue 3, pp 1008–1025 | Cite as

New Insight into Sugarcane Industry Waste Utilization (Press Mud) for Cleaner Biobutanol Production by Using C. acetobutylicum NRRL B-527

  • Pranhita R. Nimbalkar
  • Manisha A. Khedkar
  • Shashank G. Gaikwad
  • Prakash V. Chavan
  • Sandip B. BankarEmail author


In the present study, press mud, a sugar industry waste, was explored for biobutanol production to strengthen agricultural economy. The fermentative production of biobutanol was investigated via series of steps, viz. characterization, drying, acid hydrolysis, detoxification, and fermentation. Press mud contains an adequate amount of cellulose (22.3%) and hemicellulose (21.67%) on dry basis, and hence, it can be utilized for further acetone-butanol-ethanol (ABE) production. Drying experiments were conducted in the temperature range of 60–120 °C to circumvent microbial spoilage and enhance storability of press mud. Furthermore, acidic pretreatment variables, viz. sulfuric acid concentration, solid to liquid ratio, and time, were optimized using response surface methodology. The corresponding values were found to be 1.5% (v/v), 1:5 g/mL, and 15 min, respectively. In addition, detoxification studies were also conducted using activated charcoal, which removed almost 93–97% phenolics and around 98% furans, which are toxic to microorganisms during fermentation. Finally, the batch fermentation of detoxified press mud slurry (the sample dried at 100 °C and pretreated) using Clostridium acetobutylicum NRRL B-527 resulted in a higher butanol production of 4.43 g/L with a total ABE of 6.69 g/L.


Biobutanol Detoxification Drying Fermentation Press mud Pretreatment 



The authors gratefully acknowledge the Department of Science and Technology (DST) of the Ministry of Science and Technology, Government of India, for providing financial support under the scheme of the DST INSPIRE Faculty Award (IFA 13-ENG-68/July 28, 2014) during the course of this investigation. The authors are also thankful to Radhika Malkar and Manoj Kamble from the Institute of Chemical Technology, Mumbai, for their help with SEM analysis.


  1. 1.
    Bankar, S. B., Survase, S. A., Ojamo, H., & Granström, T. (2013). Biobutanol: the outlook of an academic and industrialist. RSC Advances, 3, 24734.CrossRefGoogle Scholar
  2. 2.
    Harish, B. S., Ramaiah, M. J., & Uppuluri, K. B. (2015). Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy. Renewable Sustainable Energy Reviews, 51, 533–547.CrossRefGoogle Scholar
  3. 3.
    Karimi, K., Tabatabaei, M., Horvath, I. S., & Kumar, R. (2015). Recent trends in acetone, butanol, and ethanol (ABE) production. Biofuel Ressearch Journal, 8, 301–308.CrossRefGoogle Scholar
  4. 4.
    Ezeji, T., Qureshi, N., & Blaschek, H. P. (2013). Microbial production of a biofuel (acetone-butanol-ethanol) in a continuous bioreactor: impact of bleed and simultaneous product removal. Bioprocess and Biosystems Engineering, 36, 109–116.CrossRefGoogle Scholar
  5. 5.
    Jiang, Y., Liu, J., Jiang, W., Yang, Y., & Yang, S. (2014). Current status and prospects of industrial bio-production of n-butanol in China. Biotechnology Advances, 33, 1493–1501.CrossRefGoogle Scholar
  6. 6.
    Micro Market Monitor (2015). Asia-Pacific n-butanol market by applications (butyl acrylate, butyl acetate, glycol ethers, and others) & geography-global trends & forecasts to 2019. (accessed 04.09.16).
  7. 7.
    Uyttebroek, M., Hecke, W. V., & Vanbroekhoven, K. (2015). Sustainability metrics of 1-butanol. Catalyst Today, 239, 7–10.CrossRefGoogle Scholar
  8. 8.
    Qureshi, N., & Blaschek, H. P. (2001). ABE production from corn: a recent economic evaluation. Journal Industrial Microbiology and Biotechnology, 27, 292–297.CrossRefGoogle Scholar
  9. 9.
    Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2004). Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Applied Microbiology Biotechnology, 63, 653–658.CrossRefGoogle Scholar
  10. 10.
    Qureshi, N., Cotta, M. A., & Saha, B. C. (2014). Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors. Food Bioproducts and Process, 92, 298–308.CrossRefGoogle Scholar
  11. 11.
    Saha, B. C., Qureshi, N., Kennedy, G. J., & Cotta, M. A. (2016). Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration and Biodegradation, 109, 29–35.CrossRefGoogle Scholar
  12. 12.
    Qureshi, N., & Ezeji, T. C. (2008). Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioproducts and Biorefineries, 2, 319–330.CrossRefGoogle Scholar
  13. 13.
    Bankar, S. B., Jurgens, G., Survase, S. A., Ojamo, H., & Granström, T. (2014). Enhanced isopropanol-butanol-ethanol (IBE) production in immobilized column reactor using modified Clostridium acetobutylicum DSM792. Fuel, 136, 226–232.CrossRefGoogle Scholar
  14. 14.
    Klein-Marcuschamer, D., Oleskowicz-Popiele, P., Simmons, B. A., & Blanch, H. W. (2010). Technoeconomic analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass and Bioenergy, 34, 1914–1921.CrossRefGoogle Scholar
  15. 15.
    Morone, A., & Pandey, R. A. (2014). Lignocellulosic biobutanol production: gridlocks and potential remedies. Renewable Sustainable Energy Reviews, 37, 21–35.CrossRefGoogle Scholar
  16. 16.
    Somerville, C., Youngs, H., Taylor, C., Davis, S. C., & Long, S. P. (2010). Feedstocks for lignocellulosic biofuels. Science, 329, 790–792.CrossRefGoogle Scholar
  17. 17.
    Kuruti, K., Rao, A. G., Gandu, B., Kiran, G., Mohammad, S., Sailaja, S., & Swamy, Y. V. (2015). Generation of bioethanol and VFA through anaerobic acidogenic fermentation route with press mud obtained from sugar mill as a feedstock. Bioresource Technology, 192, 646–653.CrossRefGoogle Scholar
  18. 18.
    Indian Sugar Industry (2015). Indian sugar industry—bitter sweetener. /SplAnalysis/IndianSugarIndustry/. Aaccessed 09 March 2016.
  19. 19.
    Ochoa George, P. A., Cabello Eras, J. J., Sagastume Gutierrez, A., & Vandecasteele, L. H. C. (2010). Residue from sugarcane juice filtration (filter cake): energy use at the sugar factory. Waste and Biomass Valorization, 1, 407–413.CrossRefGoogle Scholar
  20. 20.
    Dotaniya, M. L., & Datta, S. C. (2014). Impact of bagasse and press mud on availability and fixation capacity of phosphorus in an inceptisol of North India. Sugar Technology, 16, 109–112.CrossRefGoogle Scholar
  21. 21.
    Partha, N., & Sivasubramanian, V. (2006). Recovery of chemicals from press mud—a sugar industry waste. Indian Chemical Engineering, 48, 160–163.Google Scholar
  22. 22.
    Gupta, N., Tripathi, S., & Balomajumder, C. (2011). Characterization of press mud: a sugar industry waste. Fuel, 90, 389–394.CrossRefGoogle Scholar
  23. 23.
    Dissa, A. O., Desmorieux, H., Bathiebo, J., & Koulidiati, J. (2008). Convective drying characteristics of Amelie mango (MangiferaIndica L. cv. ‘Amelie’) with correction for shrinkage. Journal of Food Engineerning, 88, 429–437.CrossRefGoogle Scholar
  24. 24.
    Sathish, S., & Vivekanandan, S. (2015). Experimental investigation on biogas production using industrial waste (press mud) to generate renewable energy. International journal of innovative research in science, engineering and technology, 4, 2319–8753.Google Scholar
  25. 25.
    Karimi, K., Shafiei, M., & Kumar, R. (2013). Progress in physical and chemical pretreatment of lignocellulosic biomass. In V. K. Gupta & M. G. Tuohy (Eds.), Biofuel Technologies (pp. 53–96). Berlin: Springer.CrossRefGoogle Scholar
  26. 26.
    Maiti, S., Gallastegui, G., Sarma, S. J., Brar, S. K., Bihan, Y. L., Drogui, P., Buelna, G., & Verma, M. (2016). A re-look at the biochemical strategies to enhance butanol production. Biomass and Bioenergy, 94, 187–200.CrossRefGoogle Scholar
  27. 27.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of ash in biomass. Technical Report, NREL/TP-510-42622.Google Scholar
  28. 28.
    Kirk, T. K., & Obst, J. R. (1988). In W. A. Wood & S. T. Kellogg (Eds.), Methods in enzymology—biomass, part B, lignin, pectin, and chitin (pp. 87–101). San Diego: Academic Press, Inc..CrossRefGoogle Scholar
  29. 29.
    Updegraff, D. M. (1969). Semimicro determination of cellulose in biological materials. Analytical Biochemistry, 32, 420–424.CrossRefGoogle Scholar
  30. 30.
    Gao, X., Kumar, R., & Wyman, C. E. (2014). Fast hemicellulose quantification via a simple one-step acid hydrolysis. Biotechnology and Bioengineering, 111, 1088–1096.CrossRefGoogle Scholar
  31. 31.
    Jin, L., Li, Y., Lin, L., Zou, L., & Hu, H. (2015). Drying characteristic and kinetics of Huolinhe lignite in nitrogen and methane atmospheres. Fuel, 152, 80–87.CrossRefGoogle Scholar
  32. 32.
    Dinani, S. T., & Havet, M. (2015). The influence of voltage and air flow velocity of combined convective-electrohydrodynamic drying system on the kinetics and energy consumption of mushroom slices. Journal of Cleaner Productions, 95, 203–211.CrossRefGoogle Scholar
  33. 33.
    Bankar, S. B., Dhumal, V., Bhotmange, D., Bhagwat, S., & Singhal, R. S. (2014a). Empirical predictive modelling of poly-ε-lysine biosynthesis in resting cells of streptomyces noursei. Food Sciences and Biotechnology, 23, 201–207.CrossRefGoogle Scholar
  34. 34.
    Qureshi, N., Ezeji, T. C., Ebener, J., Dien, B. S., Cotta, M. A., & Blaschek, H. P. (2008). Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresource Technology, 99, 5915–5922.CrossRefGoogle Scholar
  35. 35.
    Harde, S. M., Jadhav, S. B., Bankar, S. B., Ojamo, H., Granström, T., Singhal, R. S., & Survase, S. A. (2016). Acetone-butanol-ethanol (ABE) fermentation using the root hydrolysate after extraction of forskolin from Coleus forskohlii. Renewable Energy, 86, 594–601.CrossRefGoogle Scholar
  36. 36.
    Yamamoto, M., Iakovlev, M., Bankar, S. B., Tunc, M. S., & Van Heiningen, A. (2014). Enzymatic hydrolysis of hardwood and softwood harvest residue fibers released by sulfur dioxide-ethanol-water fractionation. Bioresource Technology, 167, 530–538.CrossRefGoogle Scholar
  37. 37.
    Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., & Ingram, L. O. (2000). Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnology Progess, 16, 637–641.CrossRefGoogle Scholar
  38. 38.
    Bankar, S. B., Survase, S. A., Singhal, R. S., & Granström, T. (2012). Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313. Bioresource Technology, 106, 110–116.CrossRefGoogle Scholar
  39. 39.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  40. 40.
    Bankar, S. B., Survase, S. A., Ojamo, H., & Granström, T. (2013). The two stage immobilized column reactor with an integrated solvent recovery module for enhanced ABE production. Bioresource Technology, 140, 269–276.CrossRefGoogle Scholar
  41. 41.
    Kumar, R., Verma, D., Singh, B. L., Kumar, U., & Shweta. (2010). Composting of sugar-cane waste by-products through treatment with microorganisms and subsequent vermicomposting. Bioresource Technology, 101, 6707–6711.CrossRefGoogle Scholar
  42. 42.
    Gornicki, K., & Kaleta. (2007). Drying curve modelling of blanched carrot cubes under natural convection condition. Journal of Food Engineering, 82, 160–170.CrossRefGoogle Scholar
  43. 43.
    Hassini, L., Azzouz, S., Peczalski, R., & Belghith, A. (2007). Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering, 79, 47–56.CrossRefGoogle Scholar
  44. 44.
    Gálvez, A. V., Miranda, M., Díaz, L. P., Lopez, L., Rodriguez, K., & Scala, K. D. (2010). Effective moisture diffusivity determination and mathematical modeling of the drying curves of the olive-waste cake. Bioresource Technology, 101, 7265–7270.CrossRefGoogle Scholar
  45. 45.
    Akdas, S., & Baslar, M. (2014). Dehydration and degradation kinetics of bioactive compounds for mandarin slices under vacuum and oven drying conditions. Journal of Food Process Preservations, 39, 1098–1107.CrossRefGoogle Scholar
  46. 46.
    Kim, B. S., & Lee, Y. Y. (2002). Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute acid pretreatment. Bioresource Technology, 83, 165–171.CrossRefGoogle Scholar
  47. 47.
    Xiang, Q., Kim, J. S., & Lee, Y. Y. (2003). A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Applied Biochemistry and Biotechnology, 105–108, 337–352.CrossRefGoogle Scholar
  48. 48.
    Timung, R., Mohan, M., Chilukoti, B., Sasmal, S., Banerjee, T., & Goud, V. V. (2015). Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass and Bioenergy, 81, 9–18.CrossRefGoogle Scholar
  49. 49.
    Amiri, H., & Karimi, K. (2015). Improvement of acetone, butanol, and ethanol production from woody biomass using organosolv pretreatment. Bioprocess and Biosystems Engineering, 38, 1959–1972.CrossRefGoogle Scholar
  50. 50.
    Trinh, L., Lee, Y. J., Lee, J., & Lee, H. (2015). Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass and Bioenergy, 81, 1–8.CrossRefGoogle Scholar
  51. 51.
    Koo, B. W., Min, B. C., Gwak, K. S., Lee, S. M., Choi, J. W., Yeo, H., & Choi, I. G. (2012). Structural changes in lignin during organosolv pretreatment of Liriodendron tulipifera and the effect on enzymatic hydrolysis. Biomass and Bioenergy, 42, 24–32.CrossRefGoogle Scholar
  52. 52.
    González, L. M. L., Reyes, I. P., Dewulf, J., Budde, J., Heiermann, M., & Vervaeren, H. (2014). Effect of liquid hot water pre-treatment on sugarcane press mud methane yield. Bioresource Technology, 169, 284–290.CrossRefGoogle Scholar
  53. 53.
    Baral, N. R., & Shah, A. (2014). Microbial inhibitors: formation and effects on acetone-butanol-ethanol fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology, 98, 9151–9172.CrossRefGoogle Scholar
  54. 54.
    Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable Sustainable Energy Reviews, 36, 91–106.CrossRefGoogle Scholar
  55. 55.
    Hodge, D. B., Andersson, C., Berglund, K. A., & De, U. R. (2009). Detoxification requirements for bioconversion of softwood dilute acid hydrolyzates to succinic acid. Enzyme Microbiology and Technology, 44, 309–316.CrossRefGoogle Scholar
  56. 56.
    García, V., Päkkilä, J., Ojamo, H., Muurinen, E., & Keiski, R. L. (2011). Challenges in biobutanol production: how to improve the efficiency. Renewable Sustainable Energy Reviews, 15, 964–980.CrossRefGoogle Scholar
  57. 57.
    Ezeji, T., Qureshi, N., & Blaschek, H. P. (2007). Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnology and Bioengineering, 97, 1460–1469.CrossRefGoogle Scholar
  58. 58.
    Diez-Antolinez, R., Hijosa-Valsero, M., Paniagua, A. I., & Gomez, X. (2016). Effect of nutrient supplementation on biobutanol production from cheese whey by ABE (acetone-butanol-ethanol) fermentation. Chemical Engineering Transactions, 49, 217–222.Google Scholar
  59. 59.
    Survase, S. A., Sklavounos, E., Jurgens, G., Heiningen, A., & Granström, T. (2011). Continuous acetone-butanol-ethanol fermentation using SO2-ethanol-water spent liquor from spruce. Bioresource Technology, 102, 10996–11002.CrossRefGoogle Scholar
  60. 60.
    Wang, Y., Li, X., & Blaschek, H. P. (2013). Effects of supplementary butyrate on butanol production and the metabolic switch in Clostridium beijerinckii NCIMB 8052: genome-wide transcriptional analysis with RNA-seq. Biotechnology for Biofuels, 6, 138.CrossRefGoogle Scholar
  61. 61.
    Cho, D. H., Shin, S. J., & Kim, Y. H. (2012). Effects of acetic and formic acid on ABE production by Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology and Bioprocess Engineering, 17, 270–275.CrossRefGoogle Scholar
  62. 62.
    Avila-Gaxiola, E., Avila-Gaxiola, J., Velarde-Escobar, O., Ramos-Brito, F., Atondo-Rubio, G., & Yee-Rendon, C. (2016). Effect of drying temperature on Agave tequilana leaves: a pretreatment for releasing reducing sugars for biofuel production. Journal of Food Process Engineering. doi: 10.1111/jfpe.12455.
  63. 63.
    Radjaram, B., & Saravanane, R. (2011). Assessment of optimum dilution ratio for biohydrogen production by anaerobic co-digestion of press mud with sewage and water. Bioresource Technology, 102, 2773–2780.CrossRefGoogle Scholar
  64. 64.
    Kumar, R., & Kesavapillai, B. (2012). Stimulation of extracellular invertase production from spent yeast when sugarcane press mud used as substrate through solid state fermentation. Springer Plus, 1, 81.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pranhita R. Nimbalkar
    • 1
  • Manisha A. Khedkar
    • 1
  • Shashank G. Gaikwad
    • 2
  • Prakash V. Chavan
    • 1
  • Sandip B. Bankar
    • 1
    • 3
    Email author
  1. 1.Bharati Vidyapeeth Deemed University College of EngineeringPuneIndia
  2. 2.Chemical Engineering and Process Development DivisionCSIR-National Chemical LaboratoryPuneIndia
  3. 3.Department of Bioproducts and BiosystemsAalto University School of Chemical EngineeringAaltoFinland

Personalised recommendations