Advertisement

Applied Biochemistry and Biotechnology

, Volume 183, Issue 3, pp 923–930 | Cite as

A Method for Microalgae Proteomics Analysis Based on Modified Filter-Aided Sample Preparation

  • Song Li
  • Xupeng CaoEmail author
  • Yan Wang
  • Zhen Zhu
  • Haowei Zhang
  • Song XueEmail author
  • Jing TianEmail author
Article

Abstract

With the fast development of microalgal biofuel researches, the proteomics studies of microalgae increased quickly. A filter-aided sample preparation (FASP) method is widely used proteomics sample preparation method since 2009. Here, a method of microalgae proteomics analysis based on modified filter-aided sample preparation (mFASP) was described to meet the characteristics of microalgae cells and eliminate the error caused by over-alkylation. Using Chlamydomonas reinhardtii as the model, the prepared sample was tested by standard LC-MS/MS and compared with the previous reports. The results showed mFASP is suitable for most of occasions of microalgae proteomics studies.

Keywords

FASP mFASP Chlamydomonas reinhardtii Proteomics Sample preparation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31470432) and Provincial Natural Science Foundation of Liaoning (No. 2014020090). The authors also want to express their thanks to Dr. Qin Hong Qing’s constructive discussions on the setting of the mass spectrum parameters.

Reference

  1. 1.
    Wisniewski, J. R., Zougman, A., Nagaraj, N., & Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature Method, 6, 359–362.CrossRefGoogle Scholar
  2. 2.
    Wang, J., Zhao, X., Zhao, Y., Ma, C., Zhong, R., Qian, X., & Ying, W. (2013). Influence of overalkylation in enzymatic digestion on the qualitative and quantitative analysis of proteins. Chinese Journal of Chromatography, 31, 927–933.CrossRefGoogle Scholar
  3. 3.
    Boja, E. S., & Fales, H. M. (2001). Overalkylation of a protein digest with iodoacetamide. Analytical Chemistry, 73, 3576–3582.CrossRefGoogle Scholar
  4. 4.
    Zerges, W., & Hauser, C. (2009). In D. B. Stern & G. B. Witman (Eds.), The Chlamydomonas sourcebook (2nd ed., pp. 967–1025). London: Academic Press.CrossRefGoogle Scholar
  5. 5.
    Vallon, O., & Spalding, M. H. (2009). In D. B. Stern & G. B. Witman (Eds.), The Chlamydomonas sourcebook (2nd ed., pp. 115–158). London: Academic Press.CrossRefGoogle Scholar
  6. 6.
    Naumann, B., Busch, A., Allmer, J., Ostendorf, E., Zeller, M., Kirchhoff, H., & Hippler, M. (2007). Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chlamydomonas reinhardtii. Proteomics, 7, 3964–3979.CrossRefGoogle Scholar
  7. 7.
    Mastrobuoni, G., Irgang, S., Pietzke, M., Assmus, H. E., Wenzel, M., Schulze, W. X., & Kempa, S. (2012). Proteome dynamics and early salt stress response of the photosynthetic organism Chlamydomonas reinhardtii. BMC Genomics, 13, 215.CrossRefGoogle Scholar
  8. 8.
    Fascellaro, G., Petrera, A., Lai, Z. W., Nanni, P., Grossmann, J., Burger, S., Biniossek, M. L., Gomez-Auli, A., Schilling, O., & Imkamp, F. (2016). Comprehensive proteomic analysis of nitrogen-starved Mycobacterium smegmatis delta pup reveals the impact of pupylation on nitrogen stress response. Journal of Proteome Research, 15, 2812–2825.CrossRefGoogle Scholar
  9. 9.
    Eitzinger, N., Wagner, V., Weisheit, W., Geimer, S., Boness, D., Kreimer, G., & Mittag, M. (2015). Proteomic analysis of a fraction with intact eyespots of Chlamydomonas reinhardtii and assignment of protein methylation. Frontiers in Plant Science, 6, 1085.CrossRefGoogle Scholar
  10. 10.
    Harris, E. H. (2001). Chlamydomonas as a model organism. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 363–406.CrossRefGoogle Scholar
  11. 11.
    Schmidt, M., Gebner, G., Luff, M., Heiland, I., Wagner, V., Kaminski, M., Geimer, S., Eitzinger, N., Reibenweber, T., Voytsekh, O., Fiedler, M., Mittag, M., & Kreimer, G. (2006). Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. The Plant Cell, 18, 1908–1930.CrossRefGoogle Scholar
  12. 12.
    Longworth, J., Noirel, J., Pandhal, J., Wright, P. C., & Vaidyanathan, S. (2012). HILIC- and SCX-based quantitative proteomics of Chlamydomonas reinhardtii during nitrogen starvation induced lipid and carbohydrate accumulation. Journal of Proteome Research, 11, 5959–5971.Google Scholar
  13. 13.
    Gillet, S., Decottignies, P., Chardonnet, S., & Le Marechal, P. (2006). Cadmium response and redoxin targets in Chlamydomonas reinhardtii: a proteomic approach. Photosynthesis Research, 89, 201–211.CrossRefGoogle Scholar
  14. 14.
    Sun, M. M., Sun, J., Qiu, J. W., Jing, H. M., & Liu, H. B. (2012). Characterization of the proteomic profiles of the brown tide alga Aureoumbra lagunensis under phosphate- and nitrogen-limiting conditions and of its phosphate limitation-specific protein with alkaline phosphatase activity. Applied and Environmental Microbiology, 78, 2025–2033.CrossRefGoogle Scholar
  15. 15.
    KIM, Y. K., YOO, W. I., LEE, S. H., & LEE, M. Y. (2005). Proteomic analysis of cadmium-induced protein profile alterations from marine alga Nannochloropsis oculata. Ecotoxicology, 14, 589–596.CrossRefGoogle Scholar
  16. 16.
    Patel, A. K., Huang, E. L., Low-Decarie, E., & Lefsrud, M. G. (2015). Comparative shotgun proteomic analysis of wastewater-cultured microalgae: nitrogen sensing and carbon fixation for growth and nutrient removal in Chlamydomonas reinhardtii. Journal of Proteome Research, 14, 3051–3067.CrossRefGoogle Scholar
  17. 17.
    Washburn, M. P., Wolters, D., & Yates 3rd, J. R. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology, 19, 242–247.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of BioengineeringDalian Polytechnic UniversityDalianChina
  2. 2.Marine Bioengineering GroupDalian Institute of Chemical Physics, CASDalianChina
  3. 3.Novel Technology and Materials for Separation and Detection of Biomolecules GroupDalian Institute of Chemical Physics, CASDalianChina

Personalised recommendations