Applied Biochemistry and Biotechnology

, Volume 183, Issue 3, pp 906–922 | Cite as

A Review of the Anaerobic Digestion of Fruit and Vegetable Waste

  • Chao Ji
  • Chui-Xue Kong
  • Zi-Li Mei
  • Jiang LiEmail author


Fruit and vegetable waste is an ever-growing global question. Anaerobic digestion techniques have been developed that facilitate turning such waste into possible sources for energy and fertilizer, simultaneously helping to reduce environmental pollution. However, various problems are encountered in applying these techniques. The purpose of this study is to review local and overseas studies, which focus on the use of anaerobic digestion to dispose fruit and vegetable wastes, discuss the acidification problems and solutions in applying anaerobic digestion for fruit and vegetable wastes and investigate the reactor design (comparing single phase with two phase) and the thermal pre-treatment for processing raw wastes. Furthermore, it analyses the dominant microorganisms involved at different stages of digestion and suggests a focus for future studies.


Fruit and vegetable waste Anaerobic digestion Co-digestion Two-phase reactor Biogas production potential 


Compliance with Ethical Standards


This work was supported by the National Science and Technology Pillar Program (2015BAD21B03), the Special Fund for Agro-scientific Research in the Public Interest (201403019) and the Agricultural Science and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences.


  1. 1.
    Bouallagui, H., Ben Cheikh, R., Marouani, L., & Hamdi, M. (2003). Mesophilic biogas production from fruit and vegetable waste in a tubular digester. Bioresource Technology, 86, 85–89.CrossRefGoogle Scholar
  2. 2.
    Bouallagui, H., Touhami, Y., Cheikh, R. B., & Hamdi, M. (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry, 40, 989–995.CrossRefGoogle Scholar
  3. 3.
    Garcia-Pena, E. I., Parameswaran, P., Kang, D. W., Canul-Chan, M., & Krajmalnik-Brown, R. (2011). Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresource Technology, 102, 9447–9455.CrossRefGoogle Scholar
  4. 4.
    Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., Liu, Y., Ma, J., Yu, L., & Li, X. (2013). Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase. Bioresource Technology, 144, 80–85.CrossRefGoogle Scholar
  5. 5.
    Liu, X., Gao, X., Wang, W., Zheng, L., Zhou, Y., & Sun, Y. (2012). Pilot-scale anaerobic co-digestion of municipal biomass waste: focusing on biogas production and GHG reduction. Renewable Energy, 44, 463–468.CrossRefGoogle Scholar
  6. 6.
    Zhang, L., Lee, Y.-W., & Jahng, D. (2011). Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresource Technology, 102, 5048–5059.CrossRefGoogle Scholar
  7. 7.
    El-Fadel, M., Bou-Zeid, E., Chahine, W., & Alayli, B. (2002). Temporal variation of leachate quality from pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Management, 22, 269–282.CrossRefGoogle Scholar
  8. 8.
    Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresource Technology, 101, 3816–3824.CrossRefGoogle Scholar
  9. 9.
    Nguyen, P. H. L., Kuruparan, P., & Visvanathan, C. (2007). Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresource Technology, 98, 380–387.CrossRefGoogle Scholar
  10. 10.
    Misi, S. N., & Forster, C. F. (2002). Semi-continuous anaerobic co-digestion of agro-wastes. Environmental Technology, 23, 445–451.CrossRefGoogle Scholar
  11. 11.
    Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940.CrossRefGoogle Scholar
  12. 12.
    Zuo, Z., Wu, S., Zhang, W., & Dong, R. (2013). Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste. Bioresource Technology, 146, 556–561.CrossRefGoogle Scholar
  13. 13.
    Zhou, Y., Takaoka, M., Wang, W., Liu, X., & Oshita, K. (2013). Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: a pilot scale study in China. Journal of Bioscience and Bioengineering, 116, 101–105.CrossRefGoogle Scholar
  14. 14.
    Liu, X., Wang, W., Gao, X., Zhou, Y., & Shen, R. (2012). Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management, 32, 249–255.CrossRefGoogle Scholar
  15. 15.
    Ruggeri, B., Malave, A. C. L., Bernardi, M., & Fino, D. (2013). Energy efficacy used to score organic refuse pretreatment processes for hydrogen anaerobic production. Waste Management, 33, 2225–2233.CrossRefGoogle Scholar
  16. 16.
    Gunaseelan, V. N. (2004). Biochemical methane potential of fruits and vegetable solid waste feedstocks. Biomass & Bioenergy, 26, 389–399.CrossRefGoogle Scholar
  17. 17.
    Ferrer, P., Cambra-Lopez, M., Cerisuelo, A., Penaranda, D. S., & Moset, V. (2014). The use of agricultural substrates to improve methane yield in anaerobic co-digestion with pig slurry: effect of substrate type and inclusion level. Waste Management, 34, 196–203.CrossRefGoogle Scholar
  18. 18.
    Ganesh, R., Torrijos, M., Sousbie, P., Lugardon, A., Steyer, J. P., & Delgenes, J. P. (2014). Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance. Waste Management, 34, 875–885.CrossRefGoogle Scholar
  19. 19.
    Bouallagui, H., Lahdheb, H., Ben Romdan, E., Rachdi, B., & Hamdi, M. (2009). Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. Journal of Environmental Management, 90, 1844–1849.CrossRefGoogle Scholar
  20. 20.
    Bouallagui, H., Rachdi, B., Gannoun, H., & Hamdi, M. (2009). Mesophilic and thermophilic anaerobic co-digestion of abattoir wastewater and fruit and vegetable waste in anaerobic sequencing batch reactors. Biodegradation, 20, 401–409.CrossRefGoogle Scholar
  21. 21.
    Habiba, L., Hassib, B., & Moktar, H. (2009). Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition. Bioresource Technology, 100, 1555–1560.CrossRefGoogle Scholar
  22. 22.
    Wang, C., Zuo, J., Chen, X., Xing, W., Xing, L., Li, P., Lu, X., & Li, C. (2014). Microbial community structures in an integrated two-phase anaerobic bioreactor fed by fruit vegetable wastes and wheat straw. Journal of Environmental Sciences, 26, 2484–2492.CrossRefGoogle Scholar
  23. 23.
    Di Maria, F., Sordi, A., Cirulli, G., Gigliotti, G., Massaccesi, L., & Cucina, M. (2014). Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity. Waste Management, 34, 1603–1608.CrossRefGoogle Scholar
  24. 24.
    Di Maria, F., & Barratta, M. (2015). Boosting methane generation by co-digestion of sludge with fruit and vegetable waste: internal environment of digester and methanogenic pathway. Waste Management, 43, 130–136.CrossRefGoogle Scholar
  25. 25.
    Wang, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B., & Li, X. (2014). Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: lab-scale and pilot-scale studies. Waste Management, 34, 2627–2633.CrossRefGoogle Scholar
  26. 26.
    Ros, M., Franke-Whittle, I. H., Morales, A. B., Insam, H., Ayuso, M., & Pascual, J. A. (2013). Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste. Bioresource Technology, 136, 1–7.CrossRefGoogle Scholar
  27. 27.
    Yen, H.-W., & Brune, D. E. (2007). Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technology, 98, 130–134.CrossRefGoogle Scholar
  28. 28.
    Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40, 3412–3418.CrossRefGoogle Scholar
  29. 29.
    Wang, Q. H., Kuninobu, M., Ogawa, H. I., & Kato, Y. (1999). Degradation of volatile fatty acids in highly efficient anaerobic digestion. Biomass & Bioenergy, 16, 407–416.CrossRefGoogle Scholar
  30. 30.
    Boone, D. R., & Xun, L. Y. (1987). Effects of pH, temperature, and nutrients on propionate degradation by a methanogenic enrichment culture. Applied and Environmental Microbiology, 53, 1589–1592.Google Scholar
  31. 31.
    Pullammanappallil, P. C., Chynoweth, D. P., Lyberatos, G., & Svoronos, S. A. (2001). Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid. Bioresource Technology, 78, 165–169.CrossRefGoogle Scholar
  32. 32.
    Agdag, O. N., & Sponza, D. T. (2007). Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. Journal of Hazardous Materials, 140, 75–85.CrossRefGoogle Scholar
  33. 33.
    Alatriste-Mondragon, F., Samar, P., Cox, H. H. J., Ahring, B. K., & Iranpour, R. (2006). Anaerobic codigestion of municipal, farm, and industrial organic wastes: a survey of recent literature. Water Environment Research, 78, 607–636.CrossRefGoogle Scholar
  34. 34.
    Cabbai, V., Ballico, M., Aneggi, E., & Goi, D. (2013). BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Management, 33, 1626–1632.CrossRefGoogle Scholar
  35. 35.
    Alkanok, G., Demirel, B., & Onay, T. T. (2014). Determination of biogas generation potential as a renewable energy source from supermarket wastes. Waste Management, 34, 134–140.CrossRefGoogle Scholar
  36. 36.
    Yang, Y.-Q., Shen, D.-G., Li, N., Xu, D., Long, Y.-Y., & Lu, X.-Y. (2013). Co-digestion of kitchen waste and fruit-vegetable waste by two-phase anaerobic digestion. Environmental Science and Pollution Research, 20, 2162–2171.CrossRefGoogle Scholar
  37. 37.
    Smith, D. B., & Almquist, C. B. (2014). The anaerobic co-digestion of fruit and vegetable waste and horse manure mixtures in a bench-scale, two-phase anaerobic digestion system. Environmental Technology, 35, 859–867.CrossRefGoogle Scholar
  38. 38.
    Gomez, X., Cuetos, M. J., Cara, J., Moran, A., & Garcia, A. I. (2006). Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes—conditions for mixing and evaluation of the organic loading rate. Renewable Energy, 31, 2017–2024.CrossRefGoogle Scholar
  39. 39.
    Forster-Carneiro, T., Perez, M., & Romero, L. I. (2008). Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresource Technology, 99, 6763–6770.CrossRefGoogle Scholar
  40. 40.
    Wu, Y., Wang, C., Liu, X., Ma, H., Wu, J., Zuo, J., & Wang, K. (2016). A new method of two-phase anaerobic digestion for fruit and vegetable waste treatment. Bioresource Technology, 211, 16–23.CrossRefGoogle Scholar
  41. 41.
    Fdez-Gueelfo, L. A., Alvarez-Gallego, C., Sales Marquez, D., & Romero Garcia, L. I. (2010). Start-up of thermophilic-dry anaerobic digestion of OFMSW using adapted modified SEBAC inoculum. Bioresource Technology, 101, 9031–9039.CrossRefGoogle Scholar
  42. 42.
    Wu, Y., Ma, H., Zheng, M., & Wang, K. (2015). Lactic acid production from acidogenic fermentation of fruit and vegetable wastes. Bioresource Technology, 191, 53–58.CrossRefGoogle Scholar
  43. 43.
    Tubtong, C., Towprayoon, S., Connor, M. A., Chaiprasert, P., & Nopharatana, A. (2010). Effect of recirculation rate on methane production and SEBAR system performance using active stage digester. Waste Management & Research, 28, 818–827.CrossRefGoogle Scholar
  44. 44.
    Gulhane, M., Khardenavis, A. A., Karia, S., Pandit, P., Kanade, G. S., Lokhande, S., Vaidya, A. N., & Purohit, H. J. (2016). Biomethanation of vegetable market waste in an anaerobic baffled reactor: effect of effluent recirculation and carbon mass balance analysis. Bioresource Technology, 215, 100–109.CrossRefGoogle Scholar
  45. 45.
    Khardenavis, A. A., Wang, J. Y., Ng, W. J., & Purohit, H. J. (2013). Management of various organic fractions of municipal solid waste via recourse to VFA and biogas generation. Environmental Technology, 34, 2085–2097.CrossRefGoogle Scholar
  46. 46.
    Wang, J. Y., Zhang, H., Stabnikova, O., & Tay, J. H. (2005). Comparison of lab-scale and pilot-scale hybrid anaerobic solid-liquid systems operated in batch and semi-continuous modes. Process Biochemistry, 40, 3580–3586.CrossRefGoogle Scholar
  47. 47.
    Chanakya, H. N., Ramachandra, T. V., Guruprasad, M., & Devi, V. (2007). Micro-treatment options for components of organic fraction of MSW in residential areas. Environmental Monitoring and Assessment, 135, 129–139.CrossRefGoogle Scholar
  48. 48.
    Chanakya, H. N., Ramachandra, T. V., & Vijayachamundeeswari, M. (2007). Resource recovery potential from secondary components of segregated municipal solid wastes. Environmental Monitoring and Assessment, 135, 119–127.CrossRefGoogle Scholar
  49. 49.
    Yabu, H., Sakai, C., Fujiwara, T., Nishio, N., & Nakashimada, Y. (2011). Thermophilic two-stage dry anaerobic digestion of model garbage with ammonia stripping. Journal of Bioscience and Bioengineering, 111, 312–319.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Chao Ji
    • 1
    • 2
  • Chui-Xue Kong
    • 1
    • 2
  • Zi-Li Mei
    • 1
    • 2
  • Jiang Li
    • 1
    • 2
    Email author
  1. 1.Biogas Institute of Ministry of AgricultureChengduChina
  2. 2.Key Laboratory of Development and Application of Rural Renewable EnergyMinistry of AgricultureChengduChina

Personalised recommendations