Applied Biochemistry and Biotechnology

, Volume 183, Issue 1, pp 20–29 | Cite as

Chemical Cell Lysis System Applicable to Lab-on-a-Disc

  • Dayeseul Lim
  • Jae Chern Yoo


The design and fabrication of a heating system has been a significant challenge in implementing chemical lysis on a lab-on-a-disc (LOD). The proposed system contains a sample inlet, phase change material (PCM) array, heating chamber, and valve in a single disc, providing cost-effective, rapid, and fully automated chemical cell lysis. Compared to the conventional cell lysis system, our cell lysis system has many advantages, such as a compact structure that is easily integrated into the LOD and reduced processing time and labor. The experiments are conducted with Salmonella typhimurium strains to demonstrate the performance. The experimental results show that the proposed approach is greatly effective in realizing a chemical cell lysis system on an LOD with higher throughput in terms of purity and yield of DNA.


Lab on a disk Chemical lysis POCT Cell lysis Microfluidics 



All authors acknowledge Mathpower Co., Ltd., Korea, for financial support.


  1. 1.
    Tang, M., Wang, G., Kong, S.-K., & Ho, H.-P. (2016). A review of biomedical centrifugal microfluidic platforms. Micromachines, 7, 26.CrossRefGoogle Scholar
  2. 2.
    Robert, B., Letizia, A., & Anja, B. (2016). Detection methods for centrifugal microfluidic platforms. Biosensors & Bioelectronics, 76, 54–67.CrossRefGoogle Scholar
  3. 3.
    Kim, J. K., Johnson, M., Hill, P., & Gale, B. K. (2009). Microfluidic sample preparation: cell lysis and nucleic acid purification. Integrative Biology, 1, 574–586.CrossRefGoogle Scholar
  4. 4.
    Agrawal, S., Morarka, A., Bodas, D., & Paknikar, K. M. (2012). Multiplexed detection of waterborne pathogens in circular microfluidics. Applied Biochemistry and Biotechnology, 167, 1668–1677.CrossRefGoogle Scholar
  5. 5.
    Moghimi, H., Moradi, A., Hamedi, J., & Basiri, M. (2016). Development of a loop-mediated isothermal amplification assay for rapid and specific identification of ACT producing Alternaria alternata, the agent of brown spot disease in tangerine. Applied Biochemistry and Biotechnology, 178, 1207–1219.CrossRefGoogle Scholar
  6. 6.
    Hwang, B. H., Lee, J. W., & Cha, H. J. (2010). Polymerase chain reaction-based detection of total and specific vibrio species. Applied Biochemistry and Biotechnology, 162, 1187–1194.CrossRefGoogle Scholar
  7. 7.
    Nan, L., Jianga, Z., & Wei, X. (2014). Emerging microfluidic devices for cell lysis: a review. Lab on a Chip. Lab Chip., 14, 1060–1073.CrossRefGoogle Scholar
  8. 8.
    Siegrist, J., Gorkin, R., Bastien, M., Stewart, G., Peytavi, R., Kido, H., Bergeron, M., & Madou, M. (2010). Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab on a Chip, 10, 363–371.CrossRefGoogle Scholar
  9. 9.
    Kim, J. T., Jang, S. H., Jia, G. Y., Zoval, J. V., Da Silva, N. A., & Madou, M. J. (2004). Cell lysis on a microfluidic CD (compact disc). LabChip, 4, 516–522.Google Scholar
  10. 10.
    Lam, B., Fang, Z., Sargent, E. H., & Kelly, S. O. (2012). Polymerase chain reaction-free, sample-to-answer bacterial detection in 30 minutes with integrated cell lysis. Analytical Chemistry, 84, 21–25.CrossRefGoogle Scholar
  11. 11.
    Padilla, E., González, V., Manterola, J. M., Lonca, J., Pérez, A., Matas, L., Quesada, M. D., & Ausina, V. (2003). Evaluation of two different cell lysis methods for releasing mycobacterial nucleic acids in the INNO-LiPA mycobacteria test, diagnostic microbiology and infectious disease. Diagnostic Microbiology and Infectious Disease, 46, 19–23.CrossRefGoogle Scholar
  12. 12.
    Kim, T. H., Park, J. H., Kim, C. J., & Cho, Y. K. (2014). Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens. Analytical Chemistry, 86(8), 3841–3848.CrossRefGoogle Scholar
  13. 13.
    Privorotskaya, N., Liu, Y. S., Lee, J., Zeng, H., Carlisle, J. A., Radadia, A., Millet, L., Bashir, R., & King, W. P. (2010). Rapid thermal lysis of cells using silicon-diamond microcantilever heaters. Lab on a Chip, 10, 1135–1141.CrossRefGoogle Scholar
  14. 14.
    Omiatek, D. M., Santillo, M. F., Heien, M. L., & Ewing, A. G. (2009). Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles. Analytical Chemistry, 81, 2294–2302.CrossRefGoogle Scholar
  15. 15.
    Choi, M. S., & Yoo, J. C. (2015). Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and coriolis effect. Applied Biochemistry and Biotechnology, 175, 3778–3787.CrossRefGoogle Scholar
  16. 16.
    Kim, J. S., Jahng, M. S., Lee, G. G., Lee, K. J., Chae, H. K., Lee, J. H., Lee, J. H., & Kim, M. H. (2011). Rapid and simple detection of the invA gene in Salmonella spp. by isothermal target and probe amplification (iTPA). Letters in Applied Microbiology, 52, 399–405.CrossRefGoogle Scholar
  17. 17.
    Nakajima, H., Itoh, K. I., Arakawa, E., Inoue, M., Mori, T., & Watanabe, H. (1994). Degradation of a polymerase chain reaction (PCR) product by heat-stable deoxyribonuclease (DNase) produced from Yersinia enterocolitica. Microbiology and Immunology, 38, 153–156.CrossRefGoogle Scholar
  18. 18.
    Zhou, Q. J., Wang, L., Chen, J., Wang, R. N., Shi, Y. H., Li, C. H., Zhang, D. M., Yan, X. J., & Zhang, Y. J. (2014). Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. Journal of Microbiological Methods, 104, 26–35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of Information & Communication EngineeringSungKyunKwan UniversitySuwonSouth Korea

Personalised recommendations