Advertisement

Applied Biochemistry and Biotechnology

, Volume 182, Issue 4, pp 1675–1693 | Cite as

Induction of Apoptosis in Human Cancer Cells Through Extrinsic and Intrinsic Pathways by Balanites aegyptiaca Furostanol Saponins and Saponin-Coated SilverNanoparticles

  • Abdelrahman M. Yassin
  • Nehal M. El-DeebEmail author
  • Ahmed M. Metwaly
  • Gomaa F. El Fawal
  • Mohamed M. Radwan
  • Elsayed E. Hafez
Article

Abstract

The aim of this investigation is to examine the anticancer activities of Balanites aegyptiaca fruit extract with its biogenic silver nanoparticles (AgNPs) against colon and liver cancer cells. B. aegyptiaca aqueous extract was fractionated according to polarity and by biosynthesized AgNP. The cytotoxicity of the extract, semi-purified fractions, and the AgNPs was examined on noncancerous cell lines. The safer fraction was subjected to ultra-performance liquid chromatography-MS to identify the major active constituents. The anticancer activities of the nontoxic doses of all the used treatments were tested against HepG2 and CaCo2 cells. The nontoxic dose of the B. aegyptiaca (0.63 mg/ml) extract showed high anti-proliferative activities against HepG2 and CaCo2 with a percentage of 81 and 77%, respectively. The butanol fraction was safer than the other two fractions with 46.3 and 90.35% anti-proliferative activity against Caco2 and HepG2 cells, respectively. The nontoxic dose of AgNPs (0.63 mg/ml) inhibits both HepG2 and Caco2 cells with a percentage of 84.5 and 83.4%, respectively. In addition, AgNPs regulate the expression of certain genes with folding higher than that of crude extract. Saponin-coated AgNPs showed great abilities to select the most anticancer ingredient(s) from the B. aegyptiaca extract with a more safety pattern than the polarity gradient fractionation.

Keywords

Balanitesaegyptiaca Colon cancer Liver cancer Real-time PCR Gene expression 

Notes

Acknowledgements

The authors thank the Medicinal and Aromatic Plants Research Institute (MAPRI), Khartoum, Sudan, for kindly providing the plant material and plant identification.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding Sources

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

  1. 1.
    Hall J.B & Walker D.H. (1991). Balanites aegyptiaca; A monograph. School of Agricultural and Forest Sciences Publication, University of Wales, No. 3.Google Scholar
  2. 2.
    Hall, J. B. (1992). Ecology of a key African multipurpose tree species, Balanites aegyptiaca (Balanitaceae): the state-of-knowledge. Journal of Forest Ecology and Management, 50(1–2), 1–30.CrossRefGoogle Scholar
  3. 3.
    Chothani, D. L., & Vaghasiya, H. A. (2011). Review on Balanites aegyptiaca Del (desert date): phytochemical. Pharmacognosy Reviews, 5(9), 55–62.CrossRefGoogle Scholar
  4. 4.
    Anani, K., Adjrah, Y., Ameyapoh, Y., Karou, S. D., Agbonon, A., de Souza, C., & Gbeassor, M. (2015). Effects of hydroethanolic extracts of Balanites aegyptiaca (L.) Delile (Balanitaceae) on some resistant pathogens bacteria isolated from wounds. Journal of Ethnopharmacology, 164, 16–21.CrossRefGoogle Scholar
  5. 5.
    Archibald, R. G. (1993). The use of the fruit of the tree Balanites aegyptiaca in the control of schistosomiasis in the Sudan. Transactions of the Royal Society of Tropical Medicine and Hygiene., 27, 207–210.CrossRefGoogle Scholar
  6. 6.
    Beit-Yannai, E., Ben-Shabat, S., Goldschmidt, N., Chapagain, B. P., Liu, R. H., & Wiesman, Z. (2011). Antiproliferative activity of steroidal saponins from Balanites aegyptiaca—an in vitro study. Phytochemistry Letters., 4, 43–47.CrossRefGoogle Scholar
  7. 7.
    Chapagain, B. P., Saharan, V., & Wiesman, Z. (2008). Larvicidal activity of saponins from Balanites aegyptiaca callus against Aedes aegypti mosquito. Bioresource Technology., 99, 1165–1168.CrossRefGoogle Scholar
  8. 8.
    Jaiprakash, B., Karadi, R., Savadi, R., & Hukkeri, V. (2003). Hepatoprotective activity of bark of Balanites aegyptiaca Linn. Journal of Natural Remedies, 3, 205–207.Google Scholar
  9. 9.
    Koko, W., Abdalla, H., Galal, H., & Khalid, M. (2005). Evaluation of oral therapy on mansonial schistosomiasis using single dose of Balanites aegyptiaca fruits and praziquantel. Fitoterapia, 76, 30–34.CrossRefGoogle Scholar
  10. 10.
    Motaal, A. A., Shaker, S., & Haddad, P. S. (2012). Antidiabetic activity of standardized extracts of Balanites aegyptiaca fruits using cell-based bioassays. Pharmacognosy Journal, 4, 20–24.CrossRefGoogle Scholar
  11. 11.
    Speroni, E., Cervellati, R., Innocenti, G., Costa, S., Guerra, M., Dall’Acqua, S., & Govoni, P. (2005). Anti-inflammatory, anti-nociceptive and antioxidant activities of Balanites aegyptiaca (L.) Delile. Journal of Ethnopharmacology, 98, 117–125.CrossRefGoogle Scholar
  12. 12.
    Kamel, M. A. (1998). Furostanol saponin from fruits of Balanites aegyptiaca. Phytochemistry, 48, 755–757.CrossRefGoogle Scholar
  13. 13.
    Sarkar, J., Chattopadhyay, D., Patra, S., Deo, S. S., Sinha, S., Ghosh, M., Mukherjee, A., & Acharya, K. (2011). Alternaria alternata mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. Digest Journal of Nanomaterials and Biostructures, 6, 563–573.Google Scholar
  14. 14.
    Maksoud, S. A., & El Hadidi, M. (1988). The flavonoids of Balanites aegyptiaca (Balanitaceae) from Egypt. Plant Systematics and Evolution, 160, 153–158.CrossRefGoogle Scholar
  15. 15.
    Kamel, M., & Koskinen, A. (1995). Pregnane glycosides from fruits of Balanites aegyptiaca. Phytochemistry, 40, 1773–1775.CrossRefGoogle Scholar
  16. 16.
    Ricci-Vitiani, L. I., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., & De Maria, R. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.CrossRefGoogle Scholar
  17. 17.
    Lai, E. C., & Lau, W. Y. (2005). The continuing challenge of hepatic cancer in Asia. The Surgeon, 3, 210–215.CrossRefGoogle Scholar
  18. 18.
    Patil, S. V., Salunke, B. K., Patil, C. D., Salunkhe, R. B., Gavit, P., & Maheshwari, V. L. (2010). Potential of extracts of the tropical plant Balanites aegyptiaca (L) Del. (Balanitaceae) to control the mealy bug, Maconellicoccus hirsutus (Homoptera: Pseudococcidae). Crop Protection, 29, 1293–1296.CrossRefGoogle Scholar
  19. 19.
    Zaahkouk, S. A. M., Aboul-Ela, E. I., Ramadan, M. A., Bakry, S., Ahmed, B. M., & Mhany, S. (2015). Anti carcinogenic activity of methanolic extract of Balanites aegyptiaca against breast, colon, and liver cancer cells. International Journal of Advanced Research, 3(6), 255–266.Google Scholar
  20. 20.
    Nappez, C., Liagre, B., & Beneytout, J. L. (1995). Changes in lipoxygenase activities in human erythroleukemia (HEL) cells during diosgenin induced differentiation. Cancer Letters, 96, 133–140.CrossRefGoogle Scholar
  21. 21.
    Ali, B. H., Bashir, A. K., & Rasheed, R. A. (2001). Effect of the traditional medicinal plants Rhazya stricta, Balanites aegyptiaca and Haplophylum tuberculatum on paracetamol-induced hepatotoxicity in mice. Phytotherapy Research, 15(7), 598–603.CrossRefGoogle Scholar
  22. 22.
    Borenfreund, E., & Puerner, J. A. (1985). Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicology Letters, 24, 1s19–1124.CrossRefGoogle Scholar
  23. 23.
    El-Deeb, N. M., El-Sherbiny, I. M., El-Aassara, M. R., & Hafez, E. E. (2015). Novel trend in colon cancer therapy using silver nanoparticles synthesized by honey bee. Journal of Nanoscience and Nanotechnology, 6, 2.Google Scholar
  24. 24.
    Lebrin, F. I., Goumans, M. J., Jonker, L., Carvalho, R. L., Valdimarsdottir, G., Thorikay, M., Mummery, C., Arthur, H. M., & ten Dijke, P. (2004). Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. The EMBO Journal, 23(20), 4018–4028.CrossRefGoogle Scholar
  25. 25.
    Sawada, G., Raub, J., Decker, D., & Buxser, S. (1998). Analytical and numerical techniques for the evaluation of free radical damage in cultured cells using scanning laser microscopy. Cytometry, 25(3), 254–262.CrossRefGoogle Scholar
  26. 26.
    Sagna, M. B., Diallo, A., Sarr, P. S., Ndiaye, O., Goffner, D., & Guisse, A. (2015). Biochemical composition and nutritional value of Balanites aegyptiaca (L.) Del fruit pulps from northern Ferlo in Senegal. African Journal of Biotechnology, 13(2), 336–342.Google Scholar
  27. 27.
    Ya’u, J., Abdulmalik, U., Yaro, A., Chindo, B., Anuka, J., & Hussaini, I. (2011). Behavioral properties of Balanites aegyptiaca in rodents. Journal of Ethnopharmacology, 135, 725–729.CrossRefGoogle Scholar
  28. 28.
    Garbi, M., Kabbashi, A., Awatif, A., & Hamed, Y. S. (2015). Antigiardial, antiamoebic and cytotoxic activity of the leaves extracts of Vitex trifolia. Advancement in Medicinal Plant Research, 3(1), 1–7.Google Scholar
  29. 29.
    Sarker, S., Bartholomew, B., & Nash, R. (2000). Alkaloids from Balanites aegyptiaca. Fitoterapia, 71, 328–330.CrossRefGoogle Scholar
  30. 30.
    Neychev, V., Nikolova, E., Zhelev, N., & Mitev, V. (2007). Saponins from Tribulus terrestris L. are less toxic for normal human fibroblasts than for many cancer lines: influence on apoptosis and proliferation. Experimental Biology and Medicine, 232, 126–133.Google Scholar
  31. 31.
    An, C., Xin-Ming, Q., Li-Kun, G., Lin-Lin, L., Fang-Ping, C., Ying, X., Xiong-Fei, W., Xiang-Hong, L., & Jin, R. (2006). Tetrandrine-induced apoptosis in rat primary hepatocytes is initiated from mitochondria: caspases and endonuclease G (Endo G) pathway. Toxicology, 218, 1–12.CrossRefGoogle Scholar
  32. 32.
    Li, X., Fang, P., Mai, J., Choi, E. T., Wang, H., & Yang, X. (2013). Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of Hematology & Oncology, 6, 19.CrossRefGoogle Scholar
  33. 33.
    Sayin, V. I., Ibrahim, M. X., Larsson, E., Nilsson, J. A., Lindahl, P., & Bergo, M. O. (2014). Antioxidants accelerate lung cancer progression in mice. Science Translational Medicine, 6(221), 221ra15.CrossRefGoogle Scholar
  34. 34.
    Gorrini, C., Harris, I. S., & Mak, T. W. (2013). Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery, 12, 931–947.CrossRefGoogle Scholar
  35. 35.
    Yassin, A., Elnouby, M., El-Deeb, N., & Hafez, E. (2016). Tungsten oxide nanoplates; the novelty in targeting metalloproteinase-7 gene in both cervix and colon cancer cells. Applied Biochemistry and Biotechnology, 180(4), 623–637.CrossRefGoogle Scholar
  36. 36.
    Onodera, A., Nishiumi, F., Kakiguchi, K., Tanaka, A., Tanabe, N., Honma, A., Yayama, K., Yoshioka, Y., Nakahira, K., & Yonemura, S. (2015). Short-term changes in intracellular ROS localisation after the silver nanoparticles exposure depending on particle size. Toxicology Reports, 2, 574–579.CrossRefGoogle Scholar
  37. 37.
    Pickering, B., De Mel, S., Lee, M., Howell, M., Habens, F., Dallman, C., Neville, L., Potter, K., Mann, J., & Mann, D. (2007). Pharmacological inhibitors of NF-κB accelerate apoptosis in chronic lymphocytic leukaemia cells. Oncogene, 26, 1166–1177.CrossRefGoogle Scholar
  38. 38.
    Brunelle, J. K., & Letai, A. (2009). Control of mitochondrial apoptosis by the Bcl-2 family. Journal of Cell Science, 122, 437–441.CrossRefGoogle Scholar
  39. 39.
    Puthalakath, H., Huang, D. C., O’Reilly, L. A., King, S. M., & Strasser, A. (1999). The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Molecular Cell, 3, 287–296.CrossRefGoogle Scholar
  40. 40.
    Murillo, M. M., del Castillo, G., Sánchez, A., Fernández, M., & Fabregat, I. (2005). Involvement of EGF receptor and c-Src in the survival signals induced by TGF-β1 in hepatocytes. Oncogene, 24, 4580–4587.CrossRefGoogle Scholar
  41. 41.
    Pham, L. V., Tamayo, A. T., Yoshimura, L. C., Lo, P., & Ford, R. J. (2003). Inhibition of constitutive NF-κB activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. The Journal of Immunology, 171, 88–95.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Abdelrahman M. Yassin
    • 1
  • Nehal M. El-Deeb
    • 1
    Email author
  • Ahmed M. Metwaly
    • 2
  • Gomaa F. El Fawal
    • 3
  • Mohamed M. Radwan
    • 4
    • 5
  • Elsayed E. Hafez
    • 6
  1. 1.Biopharmaceutical Product Research Department, Genetic Engineering and Biotechnology Research InstituteCity of Scientific Research and Technological ApplicationsAlexandriaEgypt
  2. 2.Department of Pharmacognosy, Faculty of PharmacyAl-Azhar UniversityCairoEgypt
  3. 3.Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI)City of Scientific Research and Technological ApplicationsAlexandriaEgypt
  4. 4.National Center for Natural Products Research, School of PharmacyUniversity of MississippiOxfordUSA
  5. 5.Department of Pharmacognosy, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt
  6. 6.Department of Plant Protection and Biomolecular Diagnosis, ALCRICity of Scientific Research and Technological ApplicationsAlexandriaEgypt

Personalised recommendations