Advertisement

Applied Biochemistry and Biotechnology

, Volume 182, Issue 4, pp 1540–1547 | Cite as

Differential Maturation of miR-17 ~ 92 Cluster Members in Human Cancer Cell Lines

  • Mozhgan Abasi
  • Fatemeh Kohram
  • Parviz Fallah
  • Arash Arashkia
  • Masoud Soleimani
  • Nosratollah ZarghamiEmail author
  • Hossein GhanbarianEmail author
Article

Abstract

While some microRNAs are transcribed from a specific promoter, at least one third of human miRNA genes are clustered, wherein multiple miRNA genes are generated from a single primary transcript such as miR-17 ~ 92 cluster. Although six members of the cluster are generated from a single transcript, the mature level of each member may be diverse in various cell types. Here, we attempt to monitor the mature level of miR-17, miR-92a, and miR-20a from miR-17 ~ 92 cluster in blood (HL60 (human promyelocytic leukemia cells) and Jurkat) and breast (MDA-MB-231 and MCF-7) cancer cell lines. Interestingly, different mature levels of the miRNAs were observed in each cell line. While miR-20 was highly matured in HL60 and MDA-MB-231 cell lines, higher mature level of miR-92a was observed in Jurkat cell line compared to that of miR-20 and miR-17. Further, the mature level of miRNAs was also measured in normal and cancer cell lines. Although the mature level of miR-17 and miR-92a increased in HL60 and Jurkat cell lines, miR-20 expression showed an almost identical level in blood cancer cell lines compared to controls. Conversely, miR-20 mature level significantly increased in breast cancer cell lines whereas the expression level of miR-92a was comparable in MDA-MB-231, MCF-7, and MCF-10A cell lines.

Keywords

Cancer cell lines miR-17 ~ 92 cluster Stem cell microRNA maturation 

Notes

Acknowledgments

This work was supported by the Iran National Science Foundation (INSF), research grants of Shahid Beheshti University of Medical Sciences, Tehran. Drug Applied Research Center, and Tabriz University of Medical Sciences, Tabriz, Iran (Grant No 93/22). We would like to thank the Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center for their kind cooperation in providing materials and equipment. We also thank Ms. Ameneh Kouchaki for technical assistance.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2017_2416_MOESM1_ESM.docx (81 kb)
ESM 1 (DOCX 81 kb)
12010_2017_2416_MOESM2_ESM.docx (88 kb)
ESM 2 (DOCX 87 kb)
12010_2017_2416_MOESM3_ESM.docx (45 kb)
ESM 3 (DOCX 45 kb)

References

  1. 1.
    Ahsani, Z., Mohammadi-Yeganeh, S., Kia, V., Karimkhanloo, H., Zarghami, N., & Paryan, M. (2016). WNT1 gene from WNT signaling pathway is a direct target of miR-122 in hepatocellular carcinoma. Applied Biochemistry and Biotechnology, 1–14. Google Scholar
  2. 2.
    Nilsson, S., Möller, C., Jirström, K., LEE, A., Busch, S., & Lamb, R. (2012). Downregulation of miR-92a is associated with aggressive breast cancer features and tumour macrophage infiltration. PloS One, 7(4), e36051.CrossRefGoogle Scholar
  3. 3.
    Ghanbarian, H., Grandjean, V., François, C., & Rassoulzadegan, M. (2011). A network of regulations by small non-coding RNAs: the P-TEFb kinase in development and pathology. Frontiers in Genetics, 2(95), 1–6.Google Scholar
  4. 4.
    Olson, P., Lu, J., Zhang, H., Shai, A., Matthew, G. C., Wang, Y., Libutti, S. K., Nakakura, E. K., Golub, T., & Hanahan, D. (2009). MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes & Development, 23(18), 2152–2165.CrossRefGoogle Scholar
  5. 5.
    Abasi, M., Bazi, Z., Mohammadi-Yeganeh, S., Soleimani, M., Haghpanah, V., Zargami, N., & Ghanbarian, H. (2016). 7SK small nuclear RNA transcription level down-regulates in human tumors and stem cells. Medical Oncology, 33(11), 128.CrossRefGoogle Scholar
  6. 6.
    Babak, T., Zhang, W., Morris, Q., Blencowe, B., & Hugheset, T. R. (2004). Probing microRNAs with microarrays: tissue specificity and functional inference. RNA, 10(11), 1813–1819.CrossRefGoogle Scholar
  7. 7.
    Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128(4), 683–692.CrossRefGoogle Scholar
  8. 8.
    Keramati, F., Seyedjafari, E., Fallah, P., Soleimani, M., & Ghanbarian, H. (2015). 7SK small nuclear RNA inhibits cancer cell proliferation through apoptosis induction. Tumor Biology, 36(4), 2809–2814.CrossRefGoogle Scholar
  9. 9.
    Wang, N., Xu, H. L., Zhao, X., Wen, X., Wang, F. T., Wang, S. Y., Fu, L. L., Liu, B., & Bao, J. K. (2012). Network-based identification of novel connections among apoptotic signaling pathways in cancer. Applied Biochemistry and Biotechnology, 167(3), 621–631.CrossRefGoogle Scholar
  10. 10.
    Zhang, L., Sun, J., Wang, B., Ren, J. C., Su, W., & Zhang, T. (2015). MicroRNA-10b triggers the epithelial–mesenchymal transition (EMT) of laryngeal carcinoma Hep-2 cells by directly targeting the E-cadherin. Applied Biochemistry and Biotechnology, 176(1), 33–44.CrossRefGoogle Scholar
  11. 11.
    Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.CrossRefGoogle Scholar
  12. 12.
    Lau, N. C., Lim, L., Weinstein, E., & Bartel, D. (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 294(5543), 858–862.CrossRefGoogle Scholar
  13. 13.
    Mourelatos, Z., Dostie, J., Paushkin, S., Sharma, A., Charroux, B., Abel, L., Rappsilber, J., Mann, M., & Dreyfuss, G. (2002). miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes & Development, 16(6), 720–728.CrossRefGoogle Scholar
  14. 14.
    Altuvia, Y., Landgraf, P., Lithwick, G., Elefant, N., Pfeffer, S., Aravin, A., Brownstein, M., Tuschl, T., & Margalit, H. (2005). Clustering and conservation patterns of human microRNAs. Nucleic Acids Research, 33(8), 2697–2706.CrossRefGoogle Scholar
  15. 15.
    Concepcion, C.P., Bonetti, C., & Ventura, A. (2012). The miR-17-92 family of microRNA clusters in development and disease. Cancer journal (Sudbury, Mass.), 18(3), 262. Google Scholar
  16. 16.
    Mogilyansky, E., & Rigoutsos, I. (2013). The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death & Differentiation, 20(12), 1603–1614.CrossRefGoogle Scholar
  17. 17.
    Grillari, J., Hackl, M., & Grillari-Voglauer, R. (2010). miR-17–92 cluster: ups and downs in cancer and aging. Biogerontology, 11(4), 501–506.CrossRefGoogle Scholar
  18. 18.
    Li, H., Bian, C., Liao, L., Li, J., & Zhao, R. C. (2011). miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Research and Treatment, 126(3), 565–575.CrossRefGoogle Scholar
  19. 19.
    Tsuchida, A., Ohno, S., Wu, W., Borjigin, N., Fujita, K., Aoki, T., Ueda, S., Takanashi, M., & Kuroda, M. (2011). miR-92 is a key oncogenic component of the miR-17–92 cluster in colon cancer. Cancer Science, 102(12), 2264–2271.CrossRefGoogle Scholar
  20. 20.
    Thomson, J. M., Newman, M., Parker, J., Morin, K. E., Wright, T., & Hammond, S. (2006). Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes & Development, 20(16), 2202–2207.CrossRefGoogle Scholar
  21. 21.
    Obernosterer, G., Leuschner, P. J., Alenius, M., & Martinez, J. (2006). Post-transcriptional regulation of microRNA expression. RNA, 12(7), 1161–1167.CrossRefGoogle Scholar
  22. 22.
    Gallagher, R., Collins, S., Trujillo, J., McCredie, K., Ahearn, M., Tsai, S., Metzgar, R., Aulakh, G., Ting, R., & Ruscetti, F. (1979). Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood, 54(3), 713–733.Google Scholar
  23. 23.
    Schneider, U., Schwenk, H. U., & Bornkamm, G. (1977). Characterization of EBV-genome negative “null” and “T” cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-Hodgkin lymphoma. International Journal of Cancer, 19(5), 621–626.CrossRefGoogle Scholar
  24. 24.
    Mohammadi-yeganeh, S., Pryan, M., Samlee, S. M., Oleimani, M., Arefian, E., Azadmanesh, K., Mostafavi, E., Mahdian, R., & Karimpoor, M. (2013). Development of a robust low cost stem-loop real-time quantification PCR technique for miRNA expression analysis. Molecular Biology Reports, 40, 3665–3674.CrossRefGoogle Scholar
  25. 25.
    Pfaffl, M. W., Horgan, G. W., & Dempfle, L. (2002). Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research, 30(9), e36–e36.CrossRefGoogle Scholar
  26. 26.
    Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101–1108.CrossRefGoogle Scholar
  27. 27.
    Lee, Y., Jeon, K., Lee, J. T., Kim, S., & Kim, V. (2002). MicroRNA maturation: stepwise processing and sub cellular localization. The EMBO Journal, 21(17), 4663–4670.CrossRefGoogle Scholar
  28. 28.
    Li, Y., Vecchiarelli-F, L., Li, Y., Egan, S., Spaner, D., Hough, M., & Ben-David, Y. (2012). The miR-17-92 cluster expands multipotent hematopoietic progenitors whereas imbalanced expression of its individual oncogenic miRNAs promotes leukemia in mice. Blood, 119(19), 4486–4498.CrossRefGoogle Scholar
  29. 29.
    Kloosterman, W. P., & Plasterk, R. H. (2006). The diverse functions of microRNAs in animal development and disease. Developmental Cell, 11(4), 441–450.CrossRefGoogle Scholar
  30. 30.
    Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., Xiao, J., Shan, H., Wang, Z., & Yang, B. (2007). The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. Journal of Cell Science, 120(17), 3045–3052.CrossRefGoogle Scholar
  31. 31.
    Tan, W., Li, Y., Lim, S., & Tan, T. (2014). miR-106b-25/miR-17-92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. World Journal of Gastroenterology, 20(20), 5962–5972.CrossRefGoogle Scholar
  32. 32.
    Carraro, G., El-Hashash, A., Guidolin, D., Tiozzo, C., Turcatel, G., Young, B. M., De Langhe, S. P., Bellusci, S., Shi, W., & Parnigotto, P. (2009). miR-17 family of microRNAs controls FGF10-mediated embryonic lung epithelial branching morphogenesis through MAPK14 and STAT3 regulation of E-cadherin distribution. Developmental Biology, 333(2), 238–250.CrossRefGoogle Scholar
  33. 33.
    Li, Y., Tan, W., Neo, T., Aung, M., Wasser, S., Lim, S., & Tan, T. (2009). Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer Science, 100(7), 1234–1242.CrossRefGoogle Scholar
  34. 34.
    O’Donnell, K. A., Wentzel, E. A., Zeller, K. I., Dang, C. V., & Mendell, J. T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 435(7043), 839–843.CrossRefGoogle Scholar
  35. 35.
    Lin, Y., Liao, C., Huang, Y., Wu, M., Chi, H., Wu, S., Chen, C., Tseng, Y., Tsai, C., & Chung, I. (2013). Thyroid hormone receptor represses miR-17 expression to enhance tumor metastasis in human hepatoma cells. Oncogene, 32(38), 4509–4518.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mozhgan Abasi
    • 1
    • 2
    • 4
  • Fatemeh Kohram
    • 4
    • 5
  • Parviz Fallah
    • 6
  • Arash Arashkia
    • 7
  • Masoud Soleimani
    • 8
  • Nosratollah Zarghami
    • 1
    • 9
    Email author
  • Hossein Ghanbarian
    • 2
    • 3
    Email author
  1. 1.Department of Medical Biotechnology, Faculty of Advanced Medical ScienceTabriz University of Medical ScienceTabrizIran
  2. 2.Cellular and Molecular Biology Research CenterShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Department of Biotechnology, School of Advanced Technologies in MedicineShahid Beheshti University of Medical SciencesTehranIran
  4. 4.Department of Molecular Biology and Genetic EngineeringStem Cell Technology Research CenterTehranIran
  5. 5.Department of Cell, Molecular, and Structural BiologyMiami UniversityOxfordUSA
  6. 6.Medical Laboratory Sciences Department, Faculty of Para-MedicineAlborz University of Medical SciencesKarajIran
  7. 7.Department of VirologyPasteur Institute of IranTehranIran
  8. 8.Department of Hematology, Faculty of Medical ScienceTarbiat Modares UniversityTehranIran
  9. 9.Drug Applied Research Center, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran

Personalised recommendations