Advertisement

Applied Biochemistry and Biotechnology

, Volume 182, Issue 3, pp 1053–1064 | Cite as

Enhanced Production of Xylitol from Poplar Wood Hydrolysates Through a Sustainable Process Using Immobilized New Strain Candida tropicalis UFMG BX 12-a

  • Sai Swaroop Dalli
  • Silvio Silverio da Silva
  • Bijaya K. Uprety
  • Sudip K. RakshitEmail author
Article

Abstract

A new strain, Candida tropicalis UFMG BX 12-a, was found to produce higher yields of xylitol on poplar wood hemicellulose hydrolysate. The hemicellulose hydrolysate liquor was detoxified using a novel method we developed, involving vacuum evaporation and solvent separation of inhibitors which made the hydrolysate free of toxins while retaining high concentrations of fermentable sugars. The effect of the detoxification method on the fermentation was also reported and compared to well-known methods reported in literature. In this study, the new strain C. tropicalis UFMG BX 12-a was used on the detoxified hydrolysate to produce xylitol. It was also compared to Candida guilliermondii FTI 20037, which has been reported to be one of the best strains for fermentative production of xylitol. To further improve the efficiency of the fermentation process, these strains were immobilized in calcium alginate beads. The yield (0.92 g g−1) and productivity (0.88 g L−1 h−1) obtained by fermenting the wood hydrolysate detoxified by our new detoxification technique using an immobilized new Candida strain were found to be higher than the values reported in literature.

Keywords

Candida guilliermondii Candida tropicalis Wood hydrolysate Novel detoxification Efficient fermentation 

Notes

Acknowledgements

The authors would like to thank GreenField Ethanol Inc. for providing the wood hydrolysate for this work. We are grateful to Prof. Carlos A. Rosa from Universidade Federal de Minas Gerais, Minas Gerais, Brazil, for providing the Candida tropicalis UFMG BX 12-a strain. We also thank MITACS, Canada, for the financial support to the first author, to travel to Brazil to conduct part of this study. The authors thank other lab members and technicians at DEBIQ, USP, Brazil, for their support during this project. We are grateful for the financial support obtained from the Canada Research Chair (CRC) and Canada Foundation for Innovation (CFI).

References

  1. 1.
    Lane, J. (2013) Top Molecules: The DOE’s 12 Top Biobased List—what’s worked out? Biobased digest.Google Scholar
  2. 2.
    Yadav, M., Mishra, D. K., & Hwang, J.-S. (2012). Catalytic hydrogenation of xylose to xylitol using ruthenium catalyst on NiO modified TiO2 support. Applied Catalysis A: General, 425–426, 110–116.CrossRefGoogle Scholar
  3. 3.
    Ping, Y., Ling, H.-Z., Song, G., & Ge, J.-P. (2013). Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochemical Engineering Journal, 75, 86–91.CrossRefGoogle Scholar
  4. 4.
    Carvalho, W., Silva, S. S., Converti, A., Vitolo, M., Felipe, M. G., Roberto, I. C., Silva, M. B., & Mancilha, I. M. (2002). Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate: cell immobilization conditions. Applied Biochemistry and Biotechnology, 98-100, 489–496.CrossRefGoogle Scholar
  5. 5.
    Canilha, L., Carvalho, W., de Felipe, M. G. A., & de Almeida e Silva, J. B. (2008). Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Brazilian Journal of Microbiology, 39, 333–336.CrossRefGoogle Scholar
  6. 6.
    Mayerhoff, Z. D. V. L., Roberto, I. C., & Silva, S. S. (1997). Xylitol production from rice straw hemicellulose hydrolysate using different yeast strains. Biotechnology Letters, 19, 407–409.CrossRefGoogle Scholar
  7. 7.
    Vithanage, L. N. G., Barbosa, A. M., Kankanamge, G. R. N., Rakshit, S. K., & Dekker, R. F. H. (2015). Valorization of hemicelluloses: production of bioxylitol from poplar wood prehydrolyzates by Candida guilliermondii FTI 20037. Bioenergy Research, 9, 181–197.CrossRefGoogle Scholar
  8. 8.
    Li, M., Meng, X., Diao, E., & Du, F. (2012). Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. Journal of Chemical Technology & Biotechnology, 87, 387–392.CrossRefGoogle Scholar
  9. 9.
    Su, B., Wu, M., Zhang, Z., Lin, J., & Yang, L. (2015). Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metabolic Engineering, 31, 112–122.CrossRefGoogle Scholar
  10. 10.
    Sampaio, F. C., de Moraes, C. A., De Faveri, D., Perego, P., Converti, A., & Passos, F. M. L. (2006). Influence of temperature and pH on xylitol production from xylose by Debaryomyces hansenii UFV-170. Process Biochemistry, 41, 675–681.CrossRefGoogle Scholar
  11. 11.
    Jiang, X., He, P., Qi, X., Lin, Y., Zhang, Y. and Wang, Q. (2016). High-efficient xylitol production by evolved Candida maltosa adapted to corncob hemicellulosic hydrolysate. Journal of Chemical Technology & Biotechnology.Google Scholar
  12. 12.
    Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., & Murtaza, M. A. (2013). Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Critical Reviews in Food Science and Nutrition, 55, 1514–1528.CrossRefGoogle Scholar
  13. 13.
    Palmqvist, E., Hahn-Hägerdal, B., Szengyel, Z., Zacchi, G. and Rèczey, K. (1997). Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb Tech, 20.Google Scholar
  14. 14.
    Sárvári Horváth, I., Sjöde, A., Nilvebrant, N.-O., Zagorodni, A. and Jönsson, L. J. (2004). Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce. Appl Biochem Biotechnol, 114.Google Scholar
  15. 15.
    Zhuang, J., Liu, Y., Wu, Z., Sun, Y. and Lin, L. (2009). Hydrolysis of wheat straw hemicellulose and detoxification of the hydrolysate for xylitol production. ed.Google Scholar
  16. 16.
    de Carvalho, W., Canilha, L., Mussatto, S. I., Dragone, G., Morales, M. L. V., & Solenzal, A. I. N. (2004). Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells. Journal of Chemical Technology & Biotechnology, 79, 863–868.CrossRefGoogle Scholar
  17. 17.
    Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 93, 1–10.CrossRefGoogle Scholar
  18. 18.
    Jönsson, L. J., Alriksson, B., & Nilvebrant, N.-O. (2013). Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnology for Biofuels, 6, 16.CrossRefGoogle Scholar
  19. 19.
    Prakash, G., Varma, A. J., Prabhune, A., Shouche, Y., & Rao, M. (2011). Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology, 102, 3304–3308.CrossRefGoogle Scholar
  20. 20.
    Hernández-Pérez, A. F., Costa, I. A. L., Silva, D. D. V., Dussán, K. J., Villela, T. R., Canettieri, E. V., Carvalho Jr., J. A., Soares Neto, T. G., & Felipe, M. G. A. (2016). Biochemical conversion of sugarcane straw hemicellulosic hydrolyzate supplemented with co-substrates for xylitol production. Bioresource Technology, 200, 1085–1088.CrossRefGoogle Scholar
  21. 21.
    Silva, C. J. S. M., Mussatto, S. I., & Roberto, I. C. (2006). Study of xylitol production by Candida guilliermondii on a bench bioreactor. Journal of Food Engineering, 75, 115–119.CrossRefGoogle Scholar
  22. 22.
    Pilkington, P. H., Margaritis, A., Mensour, N. A., & Russell, I. (1998). Fundamentals of immobilised yeast cells for continuous beer fermentation: a review. Journal of the Institute of Brewing, 104, 19–31.CrossRefGoogle Scholar
  23. 23.
    Kumar, R., Vikramachakravarthi, D., & Pal, P. (2014). Production and purification of glutamic acid: a critical review towards process intensification. Chemical Engineering and Processing: Process Intensification, 81, 59–71.CrossRefGoogle Scholar
  24. 24.
    Shyamkumar, R., Moorthy, I. M. G., Ponmurugan, K., & Baskar, R. (2014). Production of L-glutamic acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): a study on immobilization and reusability. Avicenna Journal of Medical Biotechnology, 6, 163–168.Google Scholar
  25. 25.
    Milessi, T. S. S., Antunes, F. A. F., Chandel, A. K., & da Silva, S. S. (2015). Hemicellulosic ethanol production by immobilized cells of Scheffersomyces stipitis: effect of cell concentration and stirring. Bioengineered, 6, 26–32.CrossRefGoogle Scholar
  26. 26.
    Antunes, F. A. F., Santos, J. C., Chandel, A. K., Milessi, T. S. S., Peres, G. F. D., & da Silva, S. S. (2016). Hemicellulosic ethanol production by immobilized wild Brazilian yeast Scheffersomyces shehatae UFMG-HM 52.2: effects of cell concentration and stirring rate. Current Microbiology, 72, 133–138.CrossRefGoogle Scholar
  27. 27.
    Nigam, J. N. (2000). Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. Journal of Biotechnology, 80, 189–193.CrossRefGoogle Scholar
  28. 28.
    Lehoux, R. R. and Bradt, C. B. (2014) Solid/fluid separation device and method for treating biomass including solid/fluid separation. Google Patents.Google Scholar
  29. 29.
    Dalli, S. S., Patel, M. and Rakshit, S. K. (2016). Development and evaluation of poplar hemicellulose prehydrolysate upstream processes for the enhanced fermentative production of xylitol. Biomass & Bioenergy, Under Review.Google Scholar
  30. 30.
    Barbosa, M. F. S., de Medeiros, M. B., de Mancilha, I. M., Schneider, H., & Lee, H. (1988). Screening of yeasts for production of xylitol fromd-xylose and some factors which affect xylitol yield in Candida guilliermondii. Journal of Industrial Microbiology, 3, 241–251.CrossRefGoogle Scholar
  31. 31.
    Silva, S. S., Mussatto, S. I., Santos, J. C., Santos, D. T., & Polizel, J. (2007). Cell immobilization and xylitol production using sugarcane bagasse as raw material. Applied Biochemistry and Biotechnology, 141, 215–227.CrossRefGoogle Scholar
  32. 32.
    Martinez, A., Rodriguez, M. E., Wells, M. L., York, S. W., Preston, J. F. and Ingram, L. O. (2001). Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Progr, 17.Google Scholar
  33. 33.
    Tada, K., Horiuchi, J.-I., Kanno, T., & Kobayashi, M. (2004). Microbial xylitol production from corn cobs using Candida magnoliae. Journal of Bioscience and Bioengineering, 98, 228–230.CrossRefGoogle Scholar
  34. 34.
    Ding, X., & Xia, L. (2006). Effect of aeration rate on production of xylitol from corncob hemicellulose hydrolysate. Applied Biochemistry and Biotechnololgy, 133, 263–270.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sai Swaroop Dalli
    • 1
  • Silvio Silverio da Silva
    • 2
  • Bijaya K. Uprety
    • 3
  • Sudip K. Rakshit
    • 1
    • 3
    Email author
  1. 1.Department of Chemistry and Material SciencesLakehead UniversityThunder BayCanada
  2. 2.Department of Biotechnology, Engineering School of LorenaUniversity of Sao PauloSao PauloBrazil
  3. 3.Department of BiotechnologyLakehead UniversityThunder BayCanada

Personalised recommendations