Applied Biochemistry and Biotechnology

, Volume 182, Issue 2, pp 755–768 | Cite as

The Enrichment of Microbial Community for Accumulating Polyhydroxyalkanoates Using Propionate-Rich Waste

  • Bo Wu
  • Dan Zheng
  • Zheng Zhou
  • Jing-Li Wang
  • Xiao-Lan He
  • Zheng-Wei Li
  • Hong-Nan Yang
  • Han Qin
  • Min Zhang
  • Guo-Quan Hu
  • Ming-Xiong HeEmail author


Polyhydroxyalkanoates (PHAs) are promising alternatives to plastics since they have similar properties to polyolefin but are biodegradable and biocompatible. Recently, the conversion of propionate wastewater to PHAs by undefined mixed microbial cultures becomes attractive. However, how microbial community changes remains unclear during the enrichment step, which is critical for a robust PHA-producing system. In this study, PHA-accumulating cultures were enriched under feast/famine condition using propionate-rich substrates. Our results showed that during the first 2 h of the enrichment, dissolved oxygen of cultures increased remarkably until saturation, and amounts of C, N, and chemical oxygen demand of cultures decreased significantly to a very low level. High-throughput sequencing revealed that bacterial populations affiliated with Alphaproteobacteria and Bacteroidetes dominated the cultures enriched. Most of these dominant populations contributed to the conversion of short-chain fatty acids to PHAs. Being fed with the substrate rich in propionate but without nitrogen, the cultures enriched could accumulate nearly 27% PHAs at 72 h with higher content of hydroxyvalerate. Our work reveals the process in which environmental microbes responded to propionate-rich condition and shifted to populations for accumulating PHAs; it also will be helpful to develop an efficient PHA-producing system using propionate-rich waste.


Polyhydroxyalkanoate (PHA) Mixed cultures Enrichment High-throughput sequencing Microbial diversity Propionate 



This work was supported by the Sichuan Key Technology R&D Program (2014NZ0045), Special Fund for Agro-scientific Research in the Public Interest of China (201403019), and Youth Science and Technology Foundation of Sichuan Province (2015JQO047).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12010_2016_2359_MOESM1_ESM.doc (2.4 mb)
ESM 1 (DOC 2487 kb)


  1. 1.
    Gao, X., Chen, J. C., Wu, Q., & Chen, G. Q. (2011). Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Current Opinion in Biotechnology, 22, 768–774.CrossRefGoogle Scholar
  2. 2.
    Andreessen, B., Taylor, N., & Steinbuchel, A. (2014). Poly(3-hydroxypropionate): a promising alternative to fossil fuel-based materials. Applied and Environmental Microbiology, 80, 6574–6582.CrossRefGoogle Scholar
  3. 3.
    Kleerebezem, R., & van Loosdrecht, M. C. (2007). Mixed culture biotechnology for bioenergy production. Current Opinion in Biotechnology, 18, 207–212.CrossRefGoogle Scholar
  4. 4.
    Reis, M. A., Serafim, L. S., Lemos, P. C., Ramos, A. M., Aguiar, F. R., & Van Loosdrecht, M. C. (2003). Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess and Biosystems Engineering, 25, 377–385.CrossRefGoogle Scholar
  5. 5.
    Rossi, F., Olguin, E. J., Diels, L., & De Philippis, R. (2015). Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification. New Biotechnology, 32, 109–120.CrossRefGoogle Scholar
  6. 6.
    Valentino, F., Morgan-Sagastume, F., Fraraccio, S., Corsi, G., Zanaroli, G., Werker, A., & Majone, M. (2015). Sludge minimization in municipal wastewater treatment by polyhydroxyalkanoate (PHA) production. Environmental Science and Pollution Research International, 22, 7281–7294.CrossRefGoogle Scholar
  7. 7.
    Morgan-Sagastume, F., Hjort, M., Cirne, D., Gerardin, F., Lacroix, S., Gaval, G., Karabegovic, L., Alexandersson, T., Johansson, P., Karlsson, A., Bengtsson, S., Arcos-Hernandez, M. V., Magnusson, P., & Werker, A. (2015). Integrated production of polyhydroxyalkanoates (PHAs) with municipal wastewater and sludge treatment at pilot scale. Bioresource Technology, 181, 78–89.CrossRefGoogle Scholar
  8. 8.
    Anterrieu, S., Quadri, L., Geurkink, B., Dinkla, I., Bengtsson, S., Arcos-Hernandez, M., Alexandersson, T., Morgan-Sagastume, F., Karlsson, A., Hjort, M., Karabegovic, L., Magnusson, P., Johansson, P., Christensson, M., & Werker, A. (2014). Integration of biopolymer production with process water treatment at a sugar factory. New Biotechnology, 31, 308–323.CrossRefGoogle Scholar
  9. 9.
    Carvalheira, M., Oehmen, A., Carvalho, G., & Reis, M. A. (2014). Survival strategies of polyphosphate accumulating organisms and glycogen accumulating organisms under conditions of low organic loading. Bioresource Technology, 172, 290–296.CrossRefGoogle Scholar
  10. 10.
    Nikodinovic-Runic, J., Guzik, M., Kenny, S. T., Babu, R., Werker, A., & KE, O. C. (2013). Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Advances in Applied Microbiology, 84, 139–200.CrossRefGoogle Scholar
  11. 11.
    McQualter, R. B., Petrasovits, L. A., Gebbie, L. K., Schweitzer, D., Blackman, D. M., Chrysanthopoulos, P., Hodson, M. P., Plan, M. R., Riches, J. D., Snell, K. D., Brumbley, S. M., & Nielsen, L. K. (2015). The use of an acetoacetyl-CoA synthase in place of a beta-ketothiolase enhances poly-3-hydroxybutyrate production in sugarcane mesophyll cells. Plant Biotechnology Journal, 13, 700–707.CrossRefGoogle Scholar
  12. 12.
    Tan, D., Wu, Q., Chen, J. C., & Chen, G. Q. (2014). Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metabolic Engineering, 26C, 34–47.CrossRefGoogle Scholar
  13. 13.
    Albuquerque, M. G., Martino, V., Pollet, E., Averous, L., & Reis, M. A. (2011). Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. Journal of Biotechnology, 151, 66–76.CrossRefGoogle Scholar
  14. 14.
    Carvalheira, M., Oehmen, A., Carvalho, G., & Reis, M. A. (2014). The effect of substrate competition on the metabolism of polyphosphate accumulating organisms (PAOs). Water Research, 64, 149–159.CrossRefGoogle Scholar
  15. 15.
    Johnson, K., Kleerebezem, R., & van Loosdrecht, M. C. (2010). Influence of the C/N ratio on the performance of polyhydroxybutyrate (PHB) producing sequencing batch reactors at short SRTs. Water Research, 44, 2141–2152.CrossRefGoogle Scholar
  16. 16.
    Jiang, Y., & Chen, Y. (2009). The effects of the ratio of propionate to acetate on the transformation and composition of polyhydroxyalkanoates with enriched cultures of glycogen-accumulating organisms. Environmental Technology, 30, 241–249.CrossRefGoogle Scholar
  17. 17.
    Liu, C., Wang, H., Xing, W., & Wei, L. (2013). Composition diversity and nutrition conditions for accumulation of polyhydroxyalkanoate (PHA) in a bacterial community from activated sludge. Applied Microbiology and Biotechnology, 97, 9377–9387.CrossRefGoogle Scholar
  18. 18.
    Fradinho, J. C., Oehmen, A., & Reis, M. A. (2013). Effect of dark/light periods on the polyhydroxyalkanoate production of a photosynthetic mixed culture. Bioresource Technology, 148, 474–479.CrossRefGoogle Scholar
  19. 19.
    Albuquerque, M. G., Carvalho, G., Kragelund, C., Silva, A. F., Barreto Crespo, M. T., Reis, M. A., & Nielsen, P. H. (2013). Link between microbial composition and carbon substrate-uptake preferences in a PHA-storing community. The ISME Journal, 7, 1–12.CrossRefGoogle Scholar
  20. 20.
    Albuquerque, M. G., Eiroa, M., Torres, C., Nunes, B. R., & Reis, M. A. (2007). Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. Journal of Biotechnology, 130, 411–421.CrossRefGoogle Scholar
  21. 21.
    Johnson, K., Jiang, Y., Kleerebezem, R., Muyzer, G., & van Loosdrecht, M. (2009). Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. Biomacromolecules, 10, 670–676.CrossRefGoogle Scholar
  22. 22.
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., & Glöckner, F. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res, 41, D590–D596.CrossRefGoogle Scholar
  23. 23.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefGoogle Scholar
  24. 24.
    Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101, 11030–11035.CrossRefGoogle Scholar
  25. 25.
    Tian, Z., Zhang, Y., Li, Y., Chi, Y., & Yang, M. (2015). Rapid establishment of thermophilic anaerobic microbial community during the one-step startup of thermophilic anaerobic digestion from a mesophilic digester. Water Research, 69, 9–19.CrossRefGoogle Scholar
  26. 26.
    Rice, E., Baird, R., Eaton, A., & Cleseri, L. (Eds.) (1998). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association, American Water Works Association, and Water Environmental Federation.Google Scholar
  27. 27.
    Oehmen, A., Keller-Lehmann, B., Zeng, R. J., Yuan, Z., & Keller, J. (2005). Optimisation of poly-β-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems. Journal of Chromatography A, 1070, 131–136.CrossRefGoogle Scholar
  28. 28.
    Albuquerque, M. G., Concas, S., Bengtsson, S., & Reis, M. A. (2010). Mixed culture polyhydroxyalkanoates production from sugar molasses: the use of a 2-stage CSTR system for culture selection. Bioresource Technology, 101, 7123–7133.CrossRefGoogle Scholar
  29. 29.
    Kranz, R. G., Gabbert, K. K., & Madigan, M. T. (1997). Positive selection systems for discovery of novel polyester biosynthesis genes based on fatty acid detoxification. Applied and Environmental Microbiology, 63, 3010–3013.Google Scholar
  30. 30.
    Kranz, R. G., Gabbert, K. K., Locke, T. A., & Madigan, M. T. (1997). Polyhydroxyalkanoate production in Rhodobacter capsulatus: genes, mutants, expression, and physiology. Applied and Environmental Microbiology, 63, 3003–3009.Google Scholar
  31. 31.
    Pardelha, F., Albuquerque, M. G., Carvalho, G., Reis, M. A., Dias, J. M., & Oliveira, R. (2013). Segregated flux balance analysis constrained by population structure/function data: the case of PHA production by mixed microbial cultures. Biotechnology and Bioengineering, 110, 2267–2276.CrossRefGoogle Scholar
  32. 32.
    Lemos, P. C., Levantesi, C., Serafim, L. S., Rossetti, S., Reis, M. A. M., & Tandoi, V. (2008). Microbial characterisation of polyhydroxyalkanoates storing populations selected under different operating conditions using a cell-sorting RT-PCR approach. Applied Microbiology and Biotechnology, 78, 351–360.CrossRefGoogle Scholar
  33. 33.
    Salgaonkar, B. B., & Braganca, J. M. (2015). Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Halogeometricum borinquense strain E3. International Journal of Biological Macromolecules, 78, 339–346.CrossRefGoogle Scholar
  34. 34.
    Samori, C., Abbondanzi, F., Galletti, P., Giorgini, L., Mazzocchetti, L., Torri, C., & Tagliavini, E. (2015). Extraction of polyhydroxyalkanoates from mixed microbial cultures: impact on polymer quality and recovery. Bioresource Technology, 189, 195–202.CrossRefGoogle Scholar
  35. 35.
    Amulya, K., Jukuri, S., & Venkata Mohan, S. (2015). Sustainable multistage process for enhanced productivity of bioplastics from waste remediation through aerobic dynamic feeding strategy: process integration for up-scaling. Bioresource Technology, 188, 231–239.CrossRefGoogle Scholar
  36. 36.
    Foong, C. P., Lau, N. S., Deguchi, S., Toyofuku, T., Taylor, T. D., Sudesh, K., & Matsui, M. (2014). Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater. BMC Microbiology, 14, 318.CrossRefGoogle Scholar
  37. 37.
    Meng, D. C., Wang, Y., Wu, L. P., Shen, R., Chen, J. C., Wu, Q., & Chen, G. Q. (2015). Production of poly(3-hydroxypropionate) and poly(3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli. Metabolic Engineering, 29, 189–195.CrossRefGoogle Scholar
  38. 38.
    Liu, K., Chen, Y., Xiao, N., Zheng, X., & Li, M. (2015). Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge. Environmental Science & Technology, 49, 4929–4936.CrossRefGoogle Scholar
  39. 39.
    Werner, J. J., Knights, D., Garcia, M. L., Scalfone, N. B., Smith, S., Yarasheski, K., Cummings, T. A., Beers, A. R., Knight, R., & Angenent, L. T. (2011). Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proceedings of the National Academy of Sciences of the United States of America, 108, 4158–4163.CrossRefGoogle Scholar
  40. 40.
    Fernandez-Dacosta, C., Posada, J. A., Kleerebezem, R., Cuellar, M. C., & Ramirez, A. (2015). Microbial community-based polyhydroxyalkanoates (PHAs) production from wastewater: techno-economic analysis and ex-ante environmental assessment. Bioresource Technology, 185, 368–377.CrossRefGoogle Scholar
  41. 41.
    dos Santos, L. A., Ferreira, V., Neto, M. M., Pereira, M. A., Mota, M., & Nicolau, A. (2015). Study of 16 Portuguese activated sludge systems based on filamentous bacteria populations and their relationships with environmental parameters. Applied Microbiology and Biotechnology, 99, 5307–5316.CrossRefGoogle Scholar
  42. 42.
    Wang, Y., Zhang, C., Gong, T., Zuo, Z., Zhao, F., Fan, X., Yang, C., & Song, C. (2015). An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440. Journal of Microbiological Methods, 113, 27–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bo Wu
    • 1
  • Dan Zheng
    • 1
  • Zheng Zhou
    • 1
  • Jing-Li Wang
    • 1
    • 2
  • Xiao-Lan He
    • 3
  • Zheng-Wei Li
    • 1
    • 2
  • Hong-Nan Yang
    • 1
    • 2
  • Han Qin
    • 1
  • Min Zhang
    • 1
  • Guo-Quan Hu
    • 1
  • Ming-Xiong He
    • 1
    Email author
  1. 1.Biogas Institute of Ministry of AgricultureChengduChina
  2. 2.Graduate School of Chinese Academy of Agricultural SciencesBeijingChina
  3. 3.Institute of Soil and FertilizerSichuan Academy of Agricultural SciencesChengduChina

Personalised recommendations