Advertisement

Applied Biochemistry and Biotechnology

, Volume 182, Issue 2, pp 495–510 | Cite as

Use of Crude Glycerol as Sole Carbon Source for Microbial Lipid Production by Oleaginous Yeasts

  • Li-ping Liu
  • Yang Hu
  • Wen-yong Lou
  • Ning Li
  • Hong WuEmail author
  • Min-hua ZongEmail author
Article

Abstract

Crude glycerol, discharged from biodiesel production process, is a potential carbon source for microbial lipid production. The capability of using crude glycerol as sole carbon source for microbial lipid production by oleaginous yeasts Trichosporon fermentans and Trichosporon cutaneum was investigated for the first time. T. fermentans and T. cutaneum could use crude glycerol for efficient lipid production, and the optimal glycerol concentration for which were 50 and 70 g/L, respectively. The optimum nitrogen source, C/N, inoculum concentration, and pH were yeast extract + peptone, 60, 10.0%, and 6.0, respectively. The most suitable culture temperature for T. fermentans and T. cutaneum were 28 and 30 °C, respectively. Under the optimal conditions, the maximum biomass, lipid content, lipid yield, and lipid coefficient of T. fermentans and T. cutaneum were 16.0 g/L, 32.4%, 5.2 g/L, and 16.5%, and 17.4 g/L, 32.2%, 5.6 g/L, and 17.0%, respectively. Moreover, it was found that methanol present in the crude glycerol had minor influence on the lipid production. Addition of surfactant potassium oleate into the medium could slightly stimulate the cell growth and lipid accumulation of both yeasts. This study shows that T. fermentans and T. cutaneum are promising strains for lipid production on crude glycerol.

Keywords

Microbial lipid production Oleaginous yeast Crude glycerol Methanol Surfactant 

Notes

Acknowledgements

We acknowledge the Natural Science Foundation of Guangdong Province (No. 2015A030313217), the National Natural Science Foundation of China (No. 31671852), and the Science and Technology Project of Guangdong Province (No. 2013B010404005) for financial support.

Supplementary material

12010_2016_2340_MOESM1_ESM.docx (101 kb)
Supplementary Fig. 1 (DOCX 101 kb)
12010_2016_2340_MOESM2_ESM.docx (47 kb)
Supplementary Fig. 2 (DOCX 46 kb)
12010_2016_2340_MOESM3_ESM.docx (167 kb)
Supplementary Fig. 3 (DOCX 166 kb)

References

  1. 1.
    Tolmac, D., Prulovic, S., Lambic, M., Radovanovic, L., & Tolmac, J. (2014). Global trends on production and utilization of biodiesel. Energy Sources Part B-Economics Planning and Policy, 9, 130–139.CrossRefGoogle Scholar
  2. 2.
    Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87, 1083–1095.CrossRefGoogle Scholar
  3. 3.
    Huang, C., Zong, M. H., Wu, H., & Liu, Q. P. (2009). Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresource Technology, 100, 4535–4538.CrossRefGoogle Scholar
  4. 4.
    Huang, L. H., Zhang, B., Gao, B. Y., & Sun, G. P. (2011). Application of fishmeal wastewater as a potential low-cost medium for lipid production by Lipomyces starkeyi HL. Environmental Technology, 32, 1975–1981.CrossRefGoogle Scholar
  5. 5.
    Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technology, 99, 7881–7885.CrossRefGoogle Scholar
  6. 6.
    Yang, X. B., Jin, G. J., Gong, Z. W., Shen, H. W., Bai, F. W., & Zhao, Z. B. K. (2014). Recycling biodiesel-derived glycerol by the oleaginous yeast Rhodosporidium toruloides Y4 through the two-stage lipid production process. Biochemical Engineering Journal, 91, 86–91.CrossRefGoogle Scholar
  7. 7.
    Anand, P., & Saxena, R. K. (2012). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. New Biotechnology, 29, 199–205.CrossRefGoogle Scholar
  8. 8.
    Yang, F. X., Hanna, M. A., & Sun, R. C. (2012). Value-added uses for crude glycerol-a byproduct of biodiesel production. Biotechnology for Biofuels, 5, 13.CrossRefGoogle Scholar
  9. 9.
    Mu, Y., Xiu, Z. L., & Zhang, D. J. (2008). A combined bioprocess of biodiesel production by lipase with microbial production of 1,3-propanediol by Klebsiella pneumoniae. Biochemical Engineering Journal, 40, 537–541.CrossRefGoogle Scholar
  10. 10.
    Sestric, R., Munch, G., Cicek, N., Sparling, R., & Levin, D. B. (2014). Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresource Technology, 164, 41–46.CrossRefGoogle Scholar
  11. 11.
    Leiva-Candia, D. E., Tsakona, S., Kopsahelis, N., Garcia, I. L., Papanikolaou, S., Dorado, M. P., & Koutinas, A. A. (2015). Biorefining of by-product streams from sunflower-based biodiesel production plants for integrated synthesis of microbial oil and value-added co-products. Bioresource Technology, 190, 57–65.CrossRefGoogle Scholar
  12. 12.
    Duarte, S. H., Ghiselli, G., & Maugeri, F. (2013). Influence of culture conditions on lipid production by Candida sp. LEB-M3 using glycerol from biodiesel synthesis. Biocatalysis and Agricultural Biotechnology, 2, 339–343.CrossRefGoogle Scholar
  13. 13.
    Kitcha, S., & Cheirsilp, B. (2013). Enhancing lipid production from crude glycerol by newly isolated oleaginous yeasts: strain selection, process optimization, and fed-batch strategy. Bioenergy Research, 6, 300–310.CrossRefGoogle Scholar
  14. 14.
    Tchakouteu, S. S., Kalantzi, O., Gardeli, C., Koutinas, A. A., Aggelis, G., & Papanikolaou, S. (2015). Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. Journal of Applied Microbiology, 118, 911–927.CrossRefGoogle Scholar
  15. 15.
    Chi, Z. Y., Pyle, D., Wen, Z. Y., Frear, C., & Chen, S. L. (2007). A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochemistry, 42, 1537–1545.CrossRefGoogle Scholar
  16. 16.
    Papanikolaou, S., Fakas, S., Fick, M., Chevalot, I., Galiotou-Panayotou, M., Komaitis, M., Marc, I., & Aggelis, G. (2008). Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid and single cell oil. Biomass & Bioenergy, 32, 60–71.CrossRefGoogle Scholar
  17. 17.
    Chatzifragkou, A., Makri, A., Belka, A., Bellou, S., Mavrou, M., Mastoridou, M., Mystrioti, P., Onjaro, G., Aggelis, G., & Papanikolaou, S. (2011). Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy, 36, 1097–1108.CrossRefGoogle Scholar
  18. 18.
    Hu, C. M., Wu, S. G., Wang, Q., Jin, G. J., Shen, H. W., & Zhao, Z. B. K. (2011). Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnology for Biofuels, 4, 25.CrossRefGoogle Scholar
  19. 19.
    Xu, J. Y., Zhao, X. B., Wang, W. C., Du, W., & Liu, D. H. (2012). Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production. Biochemical Engineering Journal, 65, 30–36.CrossRefGoogle Scholar
  20. 20.
    Pyle, D. J., Garcia, R. A., & Wen, Z. Y. (2008). Producing docosahexaenoic acid (DHA)-rich algae from blodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition. Journal of Agricultural and Food Chemistry, 56, 3933–3939.CrossRefGoogle Scholar
  21. 21.
    Liu, L. P., Hu, Y., Wen, P., Li, N., Zong, M. H., Ou-Yang, B. N., & Wu, H. (2015). Evaluating the effects of biocompatible cholinium ionic liquids on microbial lipid production by Trichosporon fermentans. Biotechnology for Biofuels, 8, 119.CrossRefGoogle Scholar
  22. 22.
    Liang, Y. N., Cui, Y., Trushenski, J., & Blackburn, J. W. (2010). Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresource Technology, 101, 7581–7586.CrossRefGoogle Scholar
  23. 23.
    Cheirsilp, B., Kitcha, S., & Torpee, S. (2012). Co-culture of an oleaginous yeast Rhodotorula glutinis and a microalga Chlorella vulgaris for biomass and lipid production using pure and crude glycerol as a sole carbon source. Annals of Microbiology, 62, 987–993.CrossRefGoogle Scholar
  24. 24.
    Hansson, L., & Dostálek, M. (1986). Effect of culture conditions on fatty acid composition in lipids produced by the yeast Cryptococcus albidus var. albidus. Journal of the American Oil Chemists’ Society, 63, 1179–1184.CrossRefGoogle Scholar
  25. 25.
    Poli, J. S., Neres da Silva, M. A., Siqueira, E. P., Pasa, V. M. D., Rosa, C. A., & Valente, P. (2014). Microbial lipid produced by Yarrowia lipolytica QU21 using industrial waste: a potential feedstock for biodiesel production. Bioresource Technology, 161, 320–326.CrossRefGoogle Scholar
  26. 26.
    Saenge, C., Cheirsilp, B., Suksaroge, T. T., & Bourtoom, T. (2011). Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochemistry, 46, 210–218.CrossRefGoogle Scholar
  27. 27.
    Dobrowolski, A., Mitula, P., Rymowicz, W., & Mironczuk, A. M. (2016). Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresource Technology, 207, 237–243.CrossRefGoogle Scholar
  28. 28.
    Huang, C., Cui, X. X., Wu, H., Lou, W. Y., & Zong, M. H. (2014). The effect of different factors on microbial oil production by Trichosporon fermentans on rice straw acid hydrolysate. International Journal of Green Energy, 11, 787–795.CrossRefGoogle Scholar
  29. 29.
    Chen, X. F., Huang, C., Yang, X. Y., Xiong, L., Chen, X. D., & Ma, L. L. (2013). Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresource Technology, 143, 18–24.CrossRefGoogle Scholar
  30. 30.
    Wu, H., Li, Y. Y., Chen, L., & Zong, M. H. (2011). Production of microbial oil with high oleic acid content by Trichosporon capitatum. Applied Energy, 88, 138–142.CrossRefGoogle Scholar
  31. 31.
    Koike, Y., Cai, H. J., Higashiyama, K., Fujikawa, S., & Park, E. Y. (2001). Effect of consumed carbon to nitrogen ratio on mycelial morphology and arachidonic acid production in cultures of Mortierella alpina. Journal of Bioscience and Bioengineering, 91, 382–389.CrossRefGoogle Scholar
  32. 32.
    Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., & Aggelis, G. (2009). Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass & Bioenergy, 33, 573–580.CrossRefGoogle Scholar
  33. 33.
    Salakkam, A., & Webb, C. (2015). The inhibition effect of methanol, as a component of crude glycerol, on the growth rate of Cupriavidus necator and other micro-organisms. Biochemical Engineering Journal, 98, 84–90.CrossRefGoogle Scholar
  34. 34.
    Huffer, S., Clark, M. E., Ning, J. C., Blanch, H. W., & Clark, D. S. (2011). Role of alcohols in growth, lipid composition, and membrane fluidity of yeasts, bacteria, and archaea. Applied and Environmental Microbiology, 77, 6400–6408.CrossRefGoogle Scholar
  35. 35.
    Chatzifragkou, A., & Papanikolaou, S. (2012). Effect of impurities in biodiesel-derived waste glycerol on the performance and feasibility of biotechnological processes. Applied Microbiology and Biotechnology, 95, 13–27.CrossRefGoogle Scholar
  36. 36.
    Pachapur, V. L., Sarma, S. J., Brar, S. K., Bihan, Y. L., Buelna, G., & Verma, M. (2016). Surfactant mediated enhanced glycerol uptake and hydrogen production from biodiesel waste using co-culture of Enterobacter aerogenes and Clostridium butyricum. Renewable Energy, 95, 542–551.CrossRefGoogle Scholar
  37. 37.
    Xu, J. Y., Du, W., Zhao, X. B., & Liu, D. H. (2016). Renewable microbial lipid production from oleaginous yeast: some surfactants greatly improved lipid production of Rhodosporidium toruloides. World Journal of Microbiology & Biotechnology, 32, 1–9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Bioscience and BioengineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Food Science and EngineeringSouth China University of TechnologyGuangzhouChina
  3. 3.Guangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetyGuangzhouChina

Personalised recommendations