Applied Biochemistry and Biotechnology

, Volume 182, Issue 1, pp 181–196 | Cite as

Partial Characterization of the Proteolytic Properties of an Enzymatic Extract From “Aguama” Bromelia pinguin L. Fruit Grown in Mexico

  • Jesús Martín Moreno-Hernández
  • Xitlalli Desideria Hernández-Mancillas
  • Evelia Lorena Coss Navarrete
  • Miguel Ángel Mazorra-Manzano
  • Idalia Osuna-Ruiz
  • Víctor Alfonso Rodríguez-Tirado
  • Jesús Aarón Salazar-Leyva


Plant proteases are capable of performing several functions in biological systems, and their use is attractive for biotechnological process due to their interesting catalytic properties. Bromelia pinguin (aguama) is a wild abundant natural resource in several regions of Central America and the Caribbean Islands but is underutilized. Their fruits are rich in proteases with properties that are still unknown, but they represent an attractive source of enzymes for biotechnological applications. Thus, the proteolytic activity in enzymatic crude extracts (CEs) from wild B. pinguin fruits was partially characterized. Enzymes in CEs showed high proteolytic activity at acid (pH 2.0–4.0) and neutral alkaline (pH 7.0–9.0) conditions, indicating that different types of active proteases are present. Proteolytic activity inhibition by the use of specific protease inhibitors indicated that aspartic, cysteine, and serine proteases are the main types of proteases present in CEs. Activity at pH 3.0 was stable in a broad range of temperatures (25–50 °C) and retained its activity in the presence of surfactants (SDS, Tween-80), reducing agents (DTT, 2-mercapoethanol), and organic solvents (methanol, ethanol, acetone, 2-propanol), which suggests that B. pinguin proteases are potential candidates for their application in brewing, detergent, and pharmaceutical industries.


Bromelia pinguin Aguama Characterization Enzyme stability Proteolytic activity 



The first author wants to thank the National Council of Science and Technology of Mexico (CONACyT) for the economic support during postgraduate studies. Hernández-Mancillas and Coss-Navarrete wish to thank the “Programa Interinstitucional para el Fortalecimiento de la Investigación y el Posgrado del Pacífico (DELFIN)” for the received summer scholarship. We thank Gerardo Reyna for the bibliography support during this research.


  1. 1.
    Schaller, A. (2004). A cut above the rest: the regulatory function of plant proteases. Planta, 220, 183–197.CrossRefGoogle Scholar
  2. 2.
    Ehrmann, M., & Clausen, T. (2004). Proteolysis as aregulatory mechanism. Annual Review of Genetics, 38, 709–724.CrossRefGoogle Scholar
  3. 3.
    Mahajan, R. T., & Badgujar, S. B. (2010). Biological aspects of proteolytic enzymes: a review. Journal of Pharmacy Research, 3, 2048–2068.Google Scholar
  4. 4.
    Mistry, V.V. (2006). In H. Hui (Ed.), Food biochemistry and food processing, vol. 1: Chymosin in cheese making (pp. 241–252). Iowa, US.Google Scholar
  5. 5.
    Kumar, C. G., & Takagi, H. (1999). Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnology Advances, 17, 561–594.CrossRefGoogle Scholar
  6. 6.
    González-Rábade, N., Badillo-Corona, J. A., Aranda-Barradas, J. S., & Oliver-Salvador, M. C. (2011). Production of plant proteases in vivo and in vitro—a review. Biotechnology Advances, 29, 983–996.Google Scholar
  7. 7.
    Silva, S. V., & Malcata, F. X. (2005). Studies pertaining to coagulant and proteolytic activities of plant proteases from Cynara cardunculus. Food Chemistry, 89, 19–26.CrossRefGoogle Scholar
  8. 8.
    Jacob, M., Jaros, D., & Rohm, H. (2011). Recent advances in milk clotting enzymes. International Journal of Dairy Technology, 64, 14–33.CrossRefGoogle Scholar
  9. 9.
    Mazorra-Manzano, M. A., Perea-Gutiérrez, T. C., Lugo-Sánchez, M. E., Ramirez-Suarez, J. C., Torres-Llanez, M. J., González-Córdova, A. F., & Vallejo-Cordoba, B. (2013). Comparison of the milk-clotting properties of three plant extracts. Food Chemistry, 141, 1902–1907.CrossRefGoogle Scholar
  10. 10.
    Afshar-Mohammadian, M., Rahimi-Koldeh, J., & Sajedi, R. (2011). The comparison of protease activity and total protein in three cultivars of kiwifruit of Northern Iran during fruit development. Acta Physiologiae Plantarum, 33, 343–348.CrossRefGoogle Scholar
  11. 11.
    Sullivan, G. A., & Calkins, C. R. (2010). Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Science, 85, 730–734.CrossRefGoogle Scholar
  12. 12.
    Renzetti, S., & Arendt, E. K. (2009). Effect of protease treatment on the baking quality of brown rice bread: from textural and rheological properties to biochemistry and microstructure. Journal of Cereal Science, 50, 22–28.CrossRefGoogle Scholar
  13. 13.
    Jones, B. L. (2005). Endoproteases of barley and malt. Journal of Cereal Science, 42, 139–156.CrossRefGoogle Scholar
  14. 14.
    Benucci, I., Liburdi, K., Garzillo, A. M. V., & Esti, M. (2011). Bromelain from pineapple stem in alcoholic–acidic buffers for wine application. Food Chemistry, 124, 1349–1353.CrossRefGoogle Scholar
  15. 15.
    Bah, C. S. F., Carne, A., McConnell, M. A., Mros, S., & Bekhit, A. E.-D. A. (2016). Production of bioactive peptide hydrolysates from deer, sheep, pig and cattle red blood cell fractions using plant and fungal protease preparations. Food Chemistry, 202, 458–466.CrossRefGoogle Scholar
  16. 16.
    Tavano, O. L. (2013). Protein hydrolysis using proteases: an important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1–11.CrossRefGoogle Scholar
  17. 17.
    Corrons, M. A., Bertucci, J. I., Liggieri, C. S., López, L. M. I., & Bruno, M. A. (2012). Milk clotting activity and production of bioactive peptides from whey using Maclura pomifera proteases. LWT-Food Sci. Technol., 47, 103–109.CrossRefGoogle Scholar
  18. 18.
    de Castro, R. J. S., & Sato, H. H. (2015). Biologically active peptides: processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International, 74, 185–198.CrossRefGoogle Scholar
  19. 19.
    Mohamed, A. I., Morishima, I., Babiker, E. E., & Mori, N. (2009). Characterisation of partially purified milk-clotting enzyme from Solanum dubium Fresen seeds. Food Chemistry, 116, 395–400.CrossRefGoogle Scholar
  20. 20.
    López, L. M. I., Sequeiros, C., Natalucci, C. L., Brullo, A., Maras, B., Barra, D., & Caffini, N. O. (2000). Purification and characterization of Macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). Protein Express Purif, 18, 133–140.CrossRefGoogle Scholar
  21. 21.
    Bruno, M., Trejo, S., Caffini, N., & López, L. (2008). Purification and characterization of hieronymain III. Comparison with other proteases previously isolated from Bromelia hieronymi Mez. The Protein Journal, 27, 426–433.CrossRefGoogle Scholar
  22. 22.
    Pardo, M. F., López, L. M. I., Canals, F., Avilés, F. X., Natalucci, C. L., & Caffini, N. O. (2000). Purification of Balansain I, an endopeptidase from unripe fruits of Bromelia balansae Mez (Bromeliaceae). Journal of Agricultural and Food Chemistry, 48, 3795–3800.CrossRefGoogle Scholar
  23. 23.
    Monies, C., Amador, M., Cuevas, D., & Cordoba, F. (1990). Subunit structure of karatasin, the proteinase isolated from Bromelia plumieri (karatas). Agricultural and Biological Chemistry, 54, 17–24.CrossRefGoogle Scholar
  24. 24.
    Camacho-Hernández, I. L., Chávez-Velázquez, J. A., Uribe-Beltrán, M. J., Ríos-Morgan, A., & Delgado-Vargas, F. (2002). Antifungal activity of fruit pulp extract from Bromelia pinguin. Fitoterapia, 73, 411–413.CrossRefGoogle Scholar
  25. 25.
    Payrol, J. A., Miranda Martínez, M., Toledo Carrabeo, G., & Castillo García, O. (2001). Actividad farmacológica preliminar del fruto de Bromelia pinguin L.(piña de ratón). Revista Cubana de Farmacia, 35, 56–60.Google Scholar
  26. 26.
    Payrol, J. A., Mosquera, D. M. G., & Meneses, A. (2005). Determinación de parámetros farmacognósticos y bromatológicos y evaluación de la actividad antiparasitaria de una preparación obtenida del fruto de Bromelia pinguin L. que crece en Cuba. Acta Farmaceutica Bonaerense, 24, 377–382.Google Scholar
  27. 27.
    Toro-Goyco, E., Maretzki, A., & Matos, M. L. (1968). Isolation, purification, and partial characterization of pinguinain, the proteolytic enyzme from Bromelia pinguin L. Archives of Biochemistry and Biophysics, 126, 91–104.CrossRefGoogle Scholar
  28. 28.
    Payrol, J. A., Obregón, W. D., Natalucci, C. L., & Caffini, N. O. (2005). Reinvestigation of the proteolytically active components of Bromelia pinguin fruit. Fitoterapia, 76, 540–548.CrossRefGoogle Scholar
  29. 29.
    Payrol, J., Obregón, W., Trejo, S., & Caffini, N. (2008). Purification and characterization of four new cysteine endopeptidases from fruits of Bromelia pinguin L. grown in Cuba. The Protein Journal, 27, 88–96.CrossRefGoogle Scholar
  30. 30.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  31. 31.
    Sarath, G., De La Motte, R., & Wagner, F. (1989). In R. Beynon (Ed.). Proteolytic enzymes—a practical approach, vol. 3: protease assay methods (pp. 25–55). Oxford, UK.Google Scholar
  32. 32.
    García-Carreño, F. L. (1992). Protease inhibition in theory and practice. Biotechnol. Educ., 3, 145–150.Google Scholar
  33. 33.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  34. 34.
    Simkhada, J. R., Cho, S. S., Park, S. J., Mander, P., Choi, Y. H., Lee, H. J., & Yoo, J. C. (2010). An oxidant-and organic solvent-resistant alkaline metalloprotease from Streptomyces olivochromogenes. Applied Biochemistry and Biotechnology, 162, 1457–1470.CrossRefGoogle Scholar
  35. 35.
    Rahman, R. N. Z. R. A., Geok, L. P., Basri, M., & Salleh, A. B. (2006). An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: enzyme purification and characterization. Enzyme and Microbial Technology, 39, 1484–1491.CrossRefGoogle Scholar
  36. 36.
    Pérez, A. T., Carvajal, C., Torres, M. J., Martín, M. I., Pina, D., Trujillo, R., Lorenzo, J. C., Natalucci, C. L., & Hernández, M. (2006). Actividad proteolítica de extractos enzimáticos obtenidos de plantas de la familia Bromeliaceae. Rev. Cubana Plant. Medic., 11, 1–7.Google Scholar
  37. 37.
    Mazorra-Manzano, M. A., Moreno-Hernández, J. M., Ramírez-Suarez, J. C., de Jesús Torres-Llanez, M., González-Córdova, A. F., & Vallejo-Córdoba, B. (2013). Sour orange Citrus aurantium L. flowers: a new vegetable source of milk-clotting proteases. LWT-Food Sci Technol, 54, 325–330.CrossRefGoogle Scholar
  38. 38.
    Priolo, N., del Valle, S. M., Arribére, M. C., López, L., & Caffini, N. (2000). Isolation and characterization of a cysteine protease from the latex of Araujia hortorum fruits. Journal of Protein Chemistry, 19, 39–49.CrossRefGoogle Scholar
  39. 39.
    Khan, R., Rasheedi, S., & Haq, S. (2003). Effect of pH, temperature and alcohols on the stability of glycosylated and deglycosylated stem bromelain. Journal of Biosciences, 28, 709–714.CrossRefGoogle Scholar
  40. 40.
    Mazorra-Manzano, M. A., Tanaka, T., Dee, D. R., & Yada, R. Y. (2010). Structure–function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. Phytochemistry, 71, 515–523.CrossRefGoogle Scholar
  41. 41.
    Raposo, S., & Domingos, A. (2008). Purification and characterization milk-clotting aspartic proteinases from Centaurea calcitrapa cell suspension cultures. Process Biochemistry, 43, 139–144.CrossRefGoogle Scholar
  42. 42.
    Devaraj, K. B., Gowda, L. R., & Prakash, V. (2008). An unusual thermostable aspartic protease from the latex of Ficus racemosa (L.). Phytochemistry, 69, 647–655.CrossRefGoogle Scholar
  43. 43.
    Praxedes, P., Cruz, I., Gozzo, A. J., Nunes, V. A., Torquato, R. J., Tanaka, A. S., de Cássia, R., Gonzalez, Y. G., & da Silva, M. (2012). Biochemical aspects of a serine protease from Caesalpinia echinata Lam.(Brazilwood) seeds: a potential tool to access the mobilization of seed storage proteins. Scientific World Journal, 2012, 1–8.CrossRefGoogle Scholar
  44. 44.
    Kumari, M., Sharma, A., & Jagannadham, M. V. (2012). Religiosin B, a milk-clotting serine protease from Ficus religiosa. Food Chemistry, 131, 1295–1303.CrossRefGoogle Scholar
  45. 45.
    Raimbault, A.-K., Zuily-Fodil, Y., Soler, A., & Cruz de Carvalho, M. H. (2013). A novel aspartic acid protease gene from pineapple fruit (Ananas comosus): cloning, characterization and relation to postharvest chilling stress resistance. Journal of Plant Physiology, 170, 1536–1540.CrossRefGoogle Scholar
  46. 46.
    Pérez, A., Carvajal, C., Trejo, S., Torres, M. J., Martin, M. I., Lorenzo, J. C., Natalucci, C. L., & Hernández, M. (2010). Penduliflorain I: a cysteine protease isolated from Hohenbergia penduliflora (A.Rich.) Mez (Bromeliaceae). The Protein Journal, 29, 225–233.CrossRefGoogle Scholar
  47. 47.
    Le, C. M., Donnay-Moreno, C., Bruzac, S., Baron, R., Thi My Nguyen, H., & Pascal Bergé, J. (2015). Proteolysis of sardine (Sardina pilchardus) and anchovy (Stolephorus commersonii) by commercial enzymes in saline solutions. Food Technol. Biotech., 53, 87–90.CrossRefGoogle Scholar
  48. 48.
    Kumar, D., & Jagannadham, M. V. (2003). Procerain, a stable cysteine protease from the latex of Calotropis procera. Phytochemistry, 62, 1057–1071.CrossRefGoogle Scholar
  49. 49.
    Vallés, D., Furtado, S., & Cantera, A. M. B. (2007). Characterization of news proteolytic enzymes from ripe fruits of Bromelia antiacantha Bertol. (Bromeliaceae). Enzyme Microb Tech., 40, 409–413.CrossRefGoogle Scholar
  50. 50.
    Theodorou, L. G., Bieth, J. G., & Papamichael, E. M. (2007). The catalytic mode of cysteine proteinases of papain (C1) family. Bioresource Technol., 98, 1931–1939.CrossRefGoogle Scholar
  51. 51.
    Rowan, A.D. (2013). In G. Salvesen (Ed.), Handbook of proteolytic enzymes, vol. 3: stem bromelain (pp. 1871–1873). Oxford, UK.Google Scholar
  52. 52.
    Ogino, H., & Ishikawa, H. (2001). Enzymes which are stable in the presence of organic solvents. Journal of Bioscience and Bioengineering, 91, 109–116.CrossRefGoogle Scholar
  53. 53.
    Rawdkuen, S., Vanabun, A., & Benjakul, S. (2012). Recovery of proteases from the viscera of farmed giant catfish (Pangasianodon gigas) by three-phase partitioning. Process Biochemistry, 47, 2566–2569.CrossRefGoogle Scholar
  54. 54.
    Tripathi, P., Tomar, R., & Jagannadham, M. V. (2011). Purification and biochemical characterisation of a novel protease Streblin. Food Chemistry, 125, 1005–1012.CrossRefGoogle Scholar
  55. 55.
    Esti, M., Benucci, I., Lombardelli, C., Liburdi, K., & Garzillo, A. M. V. (2013). Papain from papaya (Carica papaya L.) fruit and latex: preliminary characterization in alcoholic–acidic buffer for wine application. Food and Bioproducts Processing, 91, 595–598.CrossRefGoogle Scholar
  56. 56.
    Kumar, D., & Bhalla, T. C. (2005). Microbial proteases in peptide synthesis: approaches and applications. Applied Microbiology and Biotechnology, 68, 726–736.CrossRefGoogle Scholar
  57. 57.
    Iyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochemistry, 43, 1019–1032.CrossRefGoogle Scholar
  58. 58.
    Doukyu, N., & Ogino, H. (2010). Organic solvent-tolerant enzymes. Biochemical Engineering Journal, 48, 270–282.CrossRefGoogle Scholar
  59. 59.
    Nadaroglu, H., & Demır, N. (2012). Purification and characterization of a novel serine protease compositain from Compositae (Scorzonera hispanica L.). European Food Research and Technology, 234, 945–953.CrossRefGoogle Scholar
  60. 60.
    Prakash, R., Kumar, A., & Jagannadham, M. V. (2012). Neriifolin S, a dimeric serine protease from Euphorbia neriifolia Linn.: purification and biochemical characterisation. Food Chemistry, 132, 1296–1304.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jesús Martín Moreno-Hernández
    • 1
  • Xitlalli Desideria Hernández-Mancillas
    • 2
  • Evelia Lorena Coss Navarrete
    • 2
  • Miguel Ángel Mazorra-Manzano
    • 3
  • Idalia Osuna-Ruiz
    • 2
  • Víctor Alfonso Rodríguez-Tirado
    • 2
  • Jesús Aarón Salazar-Leyva
    • 2
  1. 1.Programa de Investigación en Biotecnología. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Valle de CuliacánCuliacánMexico
  2. 2.Maestría en Ciencias Aplicadas, Unidad Académica de Ingeniería en BiotecnologíaUniversidad Politécnica de Sinaloa (UPSIN)MazatlánMexico
  3. 3.Laboratorio de Biotecnología de Lácteos, Química y Autenticidad de AlimentosCoordinación de Tecnología de Alimentos de Origen Animal Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.)HermosilloMexico

Personalised recommendations