Applied Biochemistry and Biotechnology

, Volume 181, Issue 4, pp 1496–1512 | Cite as

Production, Purification and Characterisation of a Potential Fibrinolytic Protease from Endophytic Xylaria curta by Solid Substrate Fermentation

  • Vineet Meshram
  • Sanjai Saxena
  • Karan Paul
  • Mahiti Gupta
  • Neha Kapoor


The present investigation highlights the optimal conditions for production of a non-toxic, bi-functional fibrinolytic enzyme xylarinase produced by endophytic fungus Xylaria curta by solid substrate fermentation using rice chaff medium. The purified enzyme is a monomeric protein with a molecular mass of ∼33 kDa. The enzyme exhibits cleavage of Aα and Bβ chains of fibrin(ogen) and has no effect on γ chain. The optimal fibrinolytic activity of the enzyme was observed at 35 °C and pH 8. The fibrinolytic activity was enhanced in the presence of Ca2+, whereas it was completely inhibited in the presence of Fe2+ and Zn2+ ions and inhibitors like EDTA and EGTA suggesting it to be a metalloprotease. The K m and V max of the enzyme for azocasein were 326 μM and 0.13 μM min−1. The N-terminal sequence of the enzyme (SNGPLPGGVVWAG) was same when compared to xylarinase isolated from culture broth of X. curta. Thus, xylarinase could be exploited as a potent clot busting enzyme which could be produced on large scale using solid substrate fermentation.


Metalloprotease Solid-state fermentation Thrombosis Fibrinolysis Xylaria 



Vineet Meshram is thankful to University Grants Commission, Govt. of India, New Delhi, for providing financial support via Rajiv Gandhi National Fellowship (F.16-1886(SC)/2010(SA-III). The authors are thankful to Department of Biotechnology (DBT), BT/PR/10083/NDB/52/95/2007, under which the endophytic culture was isolated. We express our gratitude to Dr. Girish Sahani, Director, IMTECH (Now DG CSIR), Mrs. Paramjit Kaur, Senior Technical Officer, Ms. Neha Rana and Ms. Navneet Kaur, Research Scholar, IMTECH, Chandigarh, India, for their kind cooperation in N-terminal sequencing.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Choi, B. S., Sapkota, K., Choi, J. H., Shin, C., Kim, S., & Kim, S. J. (2013). Herinase: a novel bi-functional fibrinolytic protease from the monkey head mushroom, Hericium erinaceum. Applied Biochemistry and Biotechnology, 170, 609–622.CrossRefGoogle Scholar
  2. 2.
    Bi, Q., Chu, J., Feng, Y., Jiang, Z., Han, B., & Liu, W. (2013). Purification and characterization of a new serine protease with fibrinolytic activity from the marine invertebrate, Urechis unicinctus. Applied Biochemistry and Biotechnology, 170, 525–540.CrossRefGoogle Scholar
  3. 3.
    Lee, S. Y., Kim, J. S., Kim, J. E., Sapkota, K., Shen, M. H., Kim, S., Chun, H. S., Yoo, J. C., Choi, H. S., Kim, M. K., & Kim, S. J. (2005). Purification and characterization of fibrinolytic enzyme from cultured mycelia of Armillaria mellea. Protein Express Purif, 43, 10–17.CrossRefGoogle Scholar
  4. 4.
    Choi, D. B., Cha, W. S., Park, N., Kim, H. W., Lee, J. H., Park, J. S., & Park, S. S. (2011). Purification and characterization of a novel fibrinolytic enzyme from fruiting bodies of Korean Cordyceps militaris. Bioresource Technology, 102, 3279–3285.CrossRefGoogle Scholar
  5. 5.
    Simkhada, J. R., Mander, P., Cho, S. S., & Yoo, J. C. (2010). A novel fibrinolytic protease from Streptomyces sp. CS684. Process Biochemistry, 45, 88–93.CrossRefGoogle Scholar
  6. 6.
    Kim, H. C., Choi, B. S., Sapkota, K., Kim, S., Lee, H. J., Yoo, J. C., & Kim, S. J. (2011). Purification and characterization of a novel, highly potent fibrinolytic enzyme from Paecilomyces tenuipes. Process Biochemistry, 46, 1545–1553.CrossRefGoogle Scholar
  7. 7.
    Mukherjee, A. K., Rai, S. K., Thakur, R., Pronobesh, C., & Kar, S. K. (2012). Bafibrinase: a non-toxic, non-hemorrhagic, direct-acting fibrinolytic serine protease from Bacillus sp. strain AS-S20-I exhibits in vivo anticoagulant activity and thrombolytic potency. Biochimie, 94, 1300–1308.CrossRefGoogle Scholar
  8. 8.
    Ju, X., Cao, X., Sun, Y., Wang, Z., Cao, C., Liu, J., & Jiang, J. (2012). Purification and characterization of a fibrinolytic enzyme from Streptomyces sp. XZNUM 00004. World J Microb Biot, 28, 2479–2486.CrossRefGoogle Scholar
  9. 9.
    Correa, R. C. G., Rhoden, S. A., Mota, T. R., Azevedo, J. L., Pamphile, J. A., De–Souza, C. G. M., Polizeli, M. D. L. T. D. M., Bracht, A., & Peralta, R. M. (2014). Endophytic fungi: expanding the arsenal of industrial enzyme producers. Journal of Industrial Microbiology & Biotechnology, 41, 1467–1478.CrossRefGoogle Scholar
  10. 10.
    Li, Y., Shuang, J. L., Yuan, W. W., Huang, W. Y., & Tan, R. X. (2007). Verticase: a fibinolytic enzyme produced by Verticilliumsp. Tj33, an endophyte of Trachelospermum jasminoides. Journal of Integrative Plant Biology, 49, 1548–1554.CrossRefGoogle Scholar
  11. 11.
    Ueda, M., Kubo, T., Miyatake, K., & Nakamura, T. (2007). Purification and characterization of fibrinolytic alkaline protease from Fusarium sp. BLB. Applied Microbiology and Biotechnology, 74, 331–338.CrossRefGoogle Scholar
  12. 12.
    Wu, B., Wu, L., Chen, D., Yang, Z., & Luo, M. (2009). Purification and characterization of a novel fibrinolytic protease from Fusarium sp. CPCC 480097. Journal of Industrial Microbiology & Biotechnology, 36, 451–459.CrossRefGoogle Scholar
  13. 13.
    Rovati, J. I., Delgado, O. D., Figueroa, L. I. C., & Farina, J. I. (2010). A novel source of fibrinolytic activity: Bionectria sp., an unconventional enzyme-producing fungus isolated from Las Yungas rainforest (Tucuman, Argentina). World J Microb Biot, 26, 55–62.CrossRefGoogle Scholar
  14. 14.
    Bhargav, S., Panda, B. P., Ali, M., & Javed, S. (2008). Solid-state fermentation: an overview. Chem Biochem Eng, 22, 49–70.Google Scholar
  15. 15.
    Singhaniaa, R. R., Patel, A. K., Soccolc, C. R., & Pandeya, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44, 13–18.CrossRefGoogle Scholar
  16. 16.
    Tao, S., Peng, L., Beihui, L., Deming, L., & Zuohu, L. (1997). Solid state fermentation of rice chaff for fibrinolytic enzyme production by Fusarium oxysporum. Biotechnology Letters, 19, 465–467.CrossRefGoogle Scholar
  17. 17.
    Gopinath, S. M., Suneetha, T. B., & Ashwini, P. G. M. (2011). Exploration of newer substrate for fibrinolytic enzyme production by solid state fermentation using Penicillium chrysogenum SGAD12. J Res Biol, 4, 242–245.Google Scholar
  18. 18.
    Hariharan, P., Naik, C. S., Vajpaye, P., & Srinivasa, K. (2014). Production, purification and characterization of thrombolytic enzyme from Cladosporium spp. through solid state fermentation. IJERT, 3, 585–589.Google Scholar
  19. 19.
    Vijayaraghavan, P., & Vincent, S. G. P. (2014). Statistical optimization of fibrinolytic enzyme production by Pseudoalteromonassp. IND11 using cow dung substrate by response surface methodology. Springer Plus, 3, 60.CrossRefGoogle Scholar
  20. 20.
    Astrup, T., & Mullertz, S. (1952). The fibrin plate method for estimating fibrinolytic activity. Arch Biochem Biophy, 40, 346–351.CrossRefGoogle Scholar
  21. 21.
    Vijayaraghavan, P., & Vincent, S. G. P. (2015). A low cost fermentation medium for potential fibrinolytic enzyme production by a newly isolated marine bacterium, Shewanella sp.IND20. Biotechnol Rep, 7, 135–142.CrossRefGoogle Scholar
  22. 22.
    Cui, L., Dong, M. S., Chen, X. H., Jiang, M., Lv, X., & Yan, G. (2008). A novel fibrinolytic enzyme from Cordyceps militaris, a Chinese traditional medicinal mushroom. World J Microb Biot, 24, 483–489.CrossRefGoogle Scholar
  23. 23.
    Cha, W. S., Park, S. S., Kim, S. J., & Choi, D. (2010). Biochemical and enzymatic properties of a fibrinolytic enzyme from Pleurotus eryngii cultivated under solid-state conditions using corn cob. Bioresource Technology, 101, 6475–6481.CrossRefGoogle Scholar
  24. 24.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  25. 25.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  26. 26.
    Babu, V., & Devi, C. S. (2015). In vitro thrombolytic activity of purified streptokinase extracted from Streptococcus equinus VIT_VB2 isolated from bovine milk. Journal of Thrombosis and Thrombolysis, 39, 71–78.CrossRefGoogle Scholar
  27. 27.
    Bi, Q., Han, B., Liu, W., Feng, Y., & Jiang, Z. (2013). UFEIII, a fibrinolytic protease from the marine invertebrate, Urechis unicinctus. Biotechnology Letters, 35, 1115–1120.CrossRefGoogle Scholar
  28. 28.
    Datta, G., Dong, A., Witt, J., & Tu, A. T. (1995). Biochemical characterization of basilase, a fibrinolytic enzyme from Crotalus basiliscus. Archives of Biochemistry and Biophysics, 317, 365–373.CrossRefGoogle Scholar
  29. 29.
    Wu, B., Wu, L., Ruan, L., Gei, M., & Chen, D. (2009). Screening of endophytic fungi with antithrombotic activity and identification of a bioactive metabolite from the endophytic fungal strain CPCC 480097. Current Microbiology, 58, 522–527.CrossRefGoogle Scholar
  30. 30.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.CrossRefGoogle Scholar
  31. 31.
    Choi, J. H., Sapkota, K., Kim, S., & Kim, S. J. (2014). Starase: a bi-functional fibrinolytic protease from hepatic caeca of Asterina pectinifera displays antithrombotic potential. Biochimie, 105, 45–57.CrossRefGoogle Scholar
  32. 32.
    Kim, J. S., Sapkota, K., Park, S. E., Choi, B. S., Kim, S., Hiep, N. T., Kim, C. S., Choi, H. S., Kim, M. K., Chun, H. S., Park, Y., & Kim, S. J. (2006). A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. Journal of Microbiology, 44, 622–631.Google Scholar
  33. 33.
    Kim, J. H., & Kim, Y. S. (1999). A fibrinolytic metalloprotease from the fruiting bodies of an edible mushroom, Armillariella mellea. Bioscience, Biotechnology, and Biochemistry, 63, 2130–2136.CrossRefGoogle Scholar
  34. 34.
    Kang, S. R., Choi, J. H., Kim, D. W., Park, S. E., Sapkota, K., Kim, S., & Kim, S. J. (2016). A bifunctional protease from green alga Ulva pertusa with anticoagulant properties: partial purification and characterization. Journal of Applied Phycology, 28, 599–607.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of BiotechnologyThapar UniversityPatialaIndia
  2. 2.Department of BiochemistryDAV UniversityJalandharIndia

Personalised recommendations