Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Trehalose-6-Phosphate as a Potential Lead Candidate for the Development of Tps1 Inhibitors: Insights from the Trehalose Biosynthesis Pathway in Diverse Yeast Species

  • 632 Accesses

  • 7 Citations

Abstract

In some pathogens, trehalose biosynthesis is induced in response to stress as a protection mechanism. This pathway is an attractive target for antimicrobials as neither the enzymes, Tps1, and Tps2, nor is trehalose present in humans. Accumulation of T6P in Candida albicans, achieved by deletion of TPS2, resulted in strong reduction of fungal virulence. In this work, the effect of T6P on Tps1 activity was evaluated. Saccharomyces cerevisiae, C. albicans, and Candida tropicalis were used as experimental models. As expected, a heat stress induced both trehalose accumulation and increased Tps1 activity. However, the addition of 125 μM T6P to extracts obtained from stressed cells totally abolished or reduced in 50 and 60 % the induction of Tps1 activity in S. cerevisiae, C. tropicalis, and C. albicans, respectively. According to our results, T6P is an uncompetitive inhibitor of S. cerevisiae Tps1. This kind of inhibitor is able to decrease the rate of reaction to zero at increased concentrations. Based on the similarities found in sequence and function between Tps1 of S. cerevisiae and some pathogens and on the inhibitory effect of T6P on Tps1 activity observed in vitro, novel drugs can be developed for the treatment of infectious diseases caused by organisms whose infectivity and survival on the host depend on trehalose.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Singer, M. A., & Lindquist, S. (1998). Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends in Biotechnology, 16, 460–468.

  2. 2.

    Benaroudj, N., Lee, D. H., & Goldberg, A. L. (2001). Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. The Journal of Biological Chemistry, 276, 24261–24267.

  3. 3.

    Crowe, J. H., Crowe, L. M., & Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 223, 701–703.

  4. 4.

    Singer, M. A., & Lindquist, S. (1984). Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular Cell, 1, 639–648.

  5. 5.

    Cray, J. A., Stevenson, A., Ball, P., Bankar, S. B., Eleutherio, E. C. A., Ezeji, T. C., Singhal, R. S., Thevelein, J. M., Timson, D., & Hallsworth, J. E. (2015). Chaotropicity: a key factor in product tolerance of biofuel-producing microorganisms. Current Opinion in Biotechnology, 33, 228–259.

  6. 6.

    Van Dijck, P., De Rop, L., Szlufcik, K., Van Ael, E., & Thevelein, J. M. (2002). Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infection and Immunity, 70, 1772–1782.

  7. 7.

    Zaragoza, O., Blazquez, M. A., & Gancedo, C. (1998). Disruption of the Candida albicans TPS1 gene encoding trehalose-6-phosphate synthase impairs formation of hyphae and decreases infectivity. Journal of Bacteriology, 180, 3809–3815.

  8. 8.

    Maidan, M. M., De Rop, L., Relloso, M., Diez-Orejas, R., Thevelein, J. M., & Van Dijck, P. (2008). Combined inactivation of the Candida albicans GPR1 and TPS2 genes results in avirulence in a mouse model for systemic infection. Infection and Immunity, 76, 1686–1694.

  9. 9.

    Ngamskulrungroj, P., Himmelreich, U., Breger, J. A., Wilson, C., Chayakulkeeree, M., Krockenberger, M. B., Malik, R., Daniel, H. M., Toffaletti, D., Djordjevic, J. T., Mylonakis, E., Meyer, W., & Perfect, J. R. (2009). The trehalose synthesis pathway is an integral part of the virulence composite for Cryptococcus gattii. Infection and Immunity, 77, 4584–4596.

  10. 10.

    Petzold, E. W., Himmelreich, U., Mylonakis, E., Rude, T., Toffaletti, D., Cox, G. M., Miller, J. L., & Perfect, J. R. (2006). Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infection and Immunity, 74, 5877–5887.

  11. 11.

    Cabib, E., & Leloir, L. F. (1958). The biosynthesis of trehalose phosphate. The Journal of Biological Chemistry, 231, 259–275.

  12. 12.

    Avonce, N., Mendoza-Vargas, A., Morett, E., & Iturriaga, G. (2006). Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 6, 109.

  13. 13.

    Elbein, A. D., Pan, Y. T., Pastuszak, I., & Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology, 13, 17R–27R.

  14. 14.

    Wannet, W. J., Op den Camp, H. J., Wisselink, H. W., van der Drift, C., Van Griensven, L. J., & Vogels, G. D. (1998). Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochimica et Biophysica Acta, 1425, 177–188.

  15. 15.

    Qu, Q. (2004). TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archaeon Thermococcus litoralis. Journal of Biological Chemistry, 279, 47890–47897.

  16. 16.

    Voit, E. O. (2003). Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. Journal of Theoretical Biology, 223, 55–78.

  17. 17.

    Bell, W., Sum, W., Hohmann, S., Wera, S., Reinders, A., De Vrgilio, C., Wiemken, A., & Thevelein, J. M. (1998). Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. The Journal of Biological Chemistry, 273, 33311–33319.

  18. 18.

    Pan, Y. T., Carroll, J. D., & Elbein, A. D. (2002). Trehalose-phosphate synthase of mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. European Journal of Biochemistry, 269, 6091–6100.

  19. 19.

    Bonini, B. M., Van Vaeck, C., Larsson, C., Gustafsson, L., Ma, P., Winderickx, J., Vand Dijck, P., & Thevelein, J. M. (2000). Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. The Biochemical Journal, 350, 261–268.

  20. 20.

    McDougall, J., Kaasen, I., & Strøm, A. R. (1993). A yeast gene for trehalose-6-phosphate synthase and its complementation of an Escherichia coli otsA mutant. FEMS Microbiology Letters, 107, 25–30.

  21. 21.

    Hottiger, T., Schmutz, P., & Wiemken, A. (1987). Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. Journal of Bacteriology, 169, 5518–5522.

  22. 22.

    Neves, M. J., & François, J. (1992). On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. The Biochemical Journal, 288, 859–864.

  23. 23.

    Ribeiro, M. J., Silva, J. T., & Panek, A. D. (1994). Trehalose metabolism in Saccharomyces cerevisiae during heat-shock. Biochimica et Biophysica Acta, 1200, 139–147.

  24. 24.

    Nery, D. M., Da Silva, C. G., Mariani, D., Fernandes, P. N., Pereira, M. D., Panek, A. D., & Eleutherio, E. C. A. (2008). The role of trehalose and its transporter in protection against reactive oxygen species. Biochimica et Biophysica Acta, 1780, 1408–1411.

  25. 25.

    Stickland, L. H. (1951). The determination of small quantities of bacteria by means of the biuret reaction. Journal of General Microbiology, 5, 698–703.

  26. 26.

    Trevisol, E. T. V., Panek, A. D., De Mesquita, J. F., & Eleutherio, E. C. A. (2014). Regulation of the yeast trehalose-synthase complex by cyclic AMP-dependent phosphorylation. Biochimica et Biophysica Acta, 1849, 1646–1650.

  27. 27.

    Chaudhuri, P., Basu, A., Sengupta, S., Lahiri, S., Dutta, T., & Ghosh, A. K. (2009). Studies on substrate specificity and activity regulating factors of trehalose-6-phosphate synthase of Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 1790, 368–374.

  28. 28.

    Smallbone, K., Malys, N., Messiha, H. L., Wishart, J. A., & Simeonidis, E. (2011). Building a kinetic model of trehalose biosynthesis in Saccharomyces cerevisiae. Methods in Enzymology, 500, 355–370.

  29. 29.

    Ring, B., Wrighton, S. A., & Mohutsky, M. (2014). Reversible mechanisms of enzyme inhibition and resulting clinical significance. Methods in Molecular Biology, 1113, 37–56.

  30. 30.

    Thevelein, J. M., & Hohmann, S. (1995). Trehalose synthase: guard to the gate of glycolysis in yeast? Trends in Biochemical Sciences, 20, 3–10.

  31. 31.

    Blázquez, M. A., Lagunas, R., Gancedo, C., & Gancedo, J. M. (1993). Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Letters, 329, 51–54.

  32. 32.

    Kothavade, R. J., Kura, M. M., Valand, A. G., & Panthaki, M. H. (2010). Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. Journal of Medical Microbiology, 59, 873–880.

  33. 33.

    Goldani, L. Z., & Santos, R. P. (2010). Candida tropicalis as an emerging pathogen in Candida meningitis: case report and review. Brazilian Journal of Infectious Disease, 14, 631–633.

  34. 34.

    Eleutherio, E., Panek, A., De Mesquita, J. F., Trevisol, E., & Magalhães, R. (2014). Revisiting yeast trehalose metabolism. Current Genetics, 61, 263–274.

  35. 35.

    Murphy, H. N., Stewart, G. R., Mischenko, V. V., Apt, A. S., Harris, R., McAlister, M. S., Driscoll, P. C., Young, D. B., & Robertson, B. D. (2005). The OtsAB pathway is essential for trehalose biosynthesis in mycobacterium tuberculosis. Journal of Biological Chemistry, 280, 14524–14529.

Download references

Acknowledgments

This work was supported by FAPERJ, CNPq, and CAPES. We thank Prof Andre Luis Santos from the Institute of Microbiology, Federal University of Rio de Janeiro, Brazil, for supplying the C. albicans and C. tropicalis strains.

Author information

Correspondence to Elis C. A. Eleutherio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Magalhães, R.S.S., De Lima, K.C., de Almeida, D.S.G. et al. Trehalose-6-Phosphate as a Potential Lead Candidate for the Development of Tps1 Inhibitors: Insights from the Trehalose Biosynthesis Pathway in Diverse Yeast Species. Appl Biochem Biotechnol 181, 914–924 (2017). https://doi.org/10.1007/s12010-016-2258-6

Download citation

Keywords

  • Trehalose-6-phosphate
  • Trehalose-6-phosphate synthase
  • Inhibition
  • Saccharomyces cerevisiae
  • Candida albicans
  • Candida tropicalis